Chinese Journal of Stroke ›› 2020, Vol. 15 ›› Issue (12): 1281-1286.DOI: 10.3969/j.issn.1673-5765.2020.12.005
Previous Articles Next Articles
Received:
2020-07-01
Online:
2020-12-20
Published:
2020-12-20
陆佩文,徐群
通讯作者:
徐群 xuqun@renji.com
基金资助:
上海市自然科学基金(19ZR1430500)
上海市转化医学协同创新中心合作研究项目(TM201808)
国家重点研发计划(2016YFC1300600)
LU Pei-Wen, XU Qun. Advances in Machine Learning-based Neuroimaging Studies on Cognitive Impairment due to Cerebral Small Vessel Disease[J]. Chinese Journal of Stroke, 2020, 15(12): 1281-1286.
陆佩文,徐群. 基于机器学习的脑小血管病认知障碍影像研究进展[J]. 中国卒中杂志, 2020, 15(12): 1281-1286.
[1] WARDLAW J M,SMITH C,DICHGANS M.Mechanisms of sporadic cerebral small vessel disease:insights from neuroimaging[J]. Lancet Neurol,2013,12(5):483-497.[2] WARDLAW J M,SMITH C,DICHGANS M.Small vessel disease:mechanisms and clinicalimplications[J]. Lancet Neurol,2019,18(7):684-696.[3] PANTONI L,GORELICK P. Advances in vascularcognitive impairment 2010[J]. Stroke,2011,42(2):291-293.[4] GORELICK P B,SCUTERI A,BLACK S E,et al.Vascular contributions to cognitive impairment anddementia:a statement for healthcare professionalsfrom the American Heart Association/AmericanStroke Association[J]. Stroke,2011,42(9):2672-2713.[5] DICHGANS M,LEYS D. Vascular cognitiveimpairment[J]. Circ Res,2017,120(3):573-591.[6] ROSENBERG G A,WALLIN A,WARDLAW JM,et al. Consensus statement for diagnosis ofsubcortical small vessel disease[J]. J Cereb BloodFlow Metab,2016,36(1):6-25.[7] WARDLAW J M,SMITH E E,BIESSELS G J,etal. Neuroimaging standards for research into smallvessel disease and its contribution to ageing andneurodegeneration[J]. Lancet Neurol,2013,12(8):822-838.[8] BIESBROEK J M,LEEMANS A,DEN BAKKERH,et al. Microstructure of strategic white mattertracts and cognition in memory clinic patients withvascular brain injury[J]. Dement Geriatr CognDisord,2017,44(5/6):268-282.[9] TULADHAR A M,VAN NORDEN A G,DE LAATK F,et al. White matter integrity in small vesseldisease is related to cognition[J/OL]. NeuroimageClin,2015,7:518-524[2020-06-20]. https://doi.org/10.1016/j.nicl.2015.02.003.[10] VAN DER HOLST H M,TULADHAR A M,ZERBIV,et al. White matter changes and gait decline incerebral small vessel disease[J/OL]. NeuroimageClin,2018,17:731-738[2020-06-20]. https://doi.org/10.1016/j.nicl.2017.12.007.[11] VAN UDEN I W,TULADHAR A M,DE LAATK F,et al. White matter integrity and depressivesymptoms in cerebral small vessel disease:the RUNDMC study[J]. Am J Geriatr Psychiatry,2015,23(5):525-535.[12] YI L Y,WANG J H,JIA L F,et al. Structural andfunctional changes in subcortical vascular mildcognitive impairment:a combined voxel-basedmorphometry and resting-state fMRI study[J/OL].PLoS One,2012,7(9):e44758[2020-06-20].https://doi.org/10.1371/journal.pone.0044758.[13] SANG L Q,CHEN L,WANG L,et al. Progressivelydisrupted brain functional connectivity network insubcortical ischemic vascular cognitive impairmentpatients[J/OL]. Front Neurol,2018,9:94[2020-06-20]. https://doi.org/10.3389/fneur.2018.00094.[14] LI C M,ZHENG J,WANG J. An fMRI study ofprefrontal cortical function in subcortical ischemicvascular cognitive impairment[J]. Am J AlzheimersDis Other Demen,2012,27(7):490-495.[15] SHI Y L,WARDLAW J M. Update on cerebral smallvessel disease:a dynamic whole-brain disease[J].Stroke Vasc Neurol,2016,1(3):83-92. [16] LAWRENCE A J,CHUNG A W,MORRIS R G,etal. Structural network efficiency is associated withcognitive impairment in small-vessel disease[J].Neurology,2014,83(4):304-311.[17] DU J,WANG Y,ZHI N,et al. Structural brainnetwork measures are superior to vascular burdenscores in predicting early cognitive impairment inpost stroke patients with small vessel disease[J/OL].Neuroimage Clin,2019,22:101712[2020-06-20].https://doi.org/10.1016/j.nicl.2019.101712.[18] TULADHAR A M,VAN UDEN I W,RUTTENJACOBSL C,et al. Structural network efficiencypredicts conversion to dementia[J]. Neurology,2016,86(12):1112-1119.[19] DEY A K,STAMENOVA V,TURNER G,et al.Pathoconnectomics of cognitive impairment in smallvessel disease:a systematic review[J]. AlzheimersDement,2016,12(7):831-845.[20] LAWRENCE A J,TOZER D J,STAMATAKIS E A,et al. A comparison of functional and tractographybased networks in cerebral small vessel disease[J/OL]. Neuroimage Clin,2018,18:425-432[2020-06-20]. https://doi.org/10.1016/j.nicl.2018.02.013.[21] LI X,LIANG Y,CHEN Y J,et al. Disruptedfrontoparietal network mediates white matterstructure dysfunction associated with cognitivedecline in hypertension patients[J]. J Neurosci,2015,35(27):10015-10024.[22] LAVDAS I,GLOCKER B,RUECKERT D,et al.Machine learning in whole-body MRI:experiencesand challenges from an applied study usingmulticentre data[J]. Clin Radiol,2019,74(5):346-356.[23] SAUR D,RONNEBERGER O,KUMMERER D,et al. Early functional magnetic resonance imagingactivations predict language outcome after stroke[J].Brain,2010,133(Pt 4):1252-1264.[24] KLOPPEL S,STONNINGTON C M,CHU C,et al.Automatic classification of MR scans in Alzheimer'sdisease[J]. Brain,2008,131(Pt 3):681-689.[25] ZACHARAKI E I,WANG S,CHAWLA S,etal. Classification of brain tumor type and gradeusing MRI texture and shape in a machine learningscheme[J]. Magn Reson Med,2009,62(6):1609-1618.[26] FRANKE K,ZIEGLER G,KLOPPEL S,etal. Estimating the age of healthy subjects fromT1-weighted MRI scans using kernel methods:exploring the influence of various parameters[J].Neuroimage,2010,50(3):883-892.[27] STONNINGTON C M,CHU C,KLOPPEL S,et al.Predicting clinical scores from magnetic resonancescans in Alzheimer's disease[J]. Neuroimage,2010,51(4):1405-1413.[28] HSIEH Y Z,LUO Y C,PAN C,et al. Cerebral smallvessel disease biomarkers detection on MRI-sensorbasedimage and deep learning[J]. Sensors(Basel),2019,19(11):2573.[29] GONZALEZ-CASTRO V,VALDES HERNANDEZM D C,CHAPPELL F M,et al. Reliability of anautomatic classifier for brain enlarged perivascularspaces burden and comparison with humanperformance[J]. Clin Sci(Lond),2017,131(13):1465-1481.[30] DUBOST F,YILMAZ P,ADAMS H,et al. Enlargedperivascular spaces in brain MRI:automatedquantification in four regions[J/OL]. Neuroimage,2019,185:534-544[2020-06-20]. https://doi.org/10.1016/j.neuroimage.2018.10.026.[31] MORRISON M A,PAYABVASH S,CHEN Y C,etal. A user-guided tool for semi-automated cerebralmicrobleed detection and volume segmentation:evaluating vascular injury and data labelling formachine learning[J/OL]. Neuroimage Clin,2018,20:498-505[2020-06-20]. https://doi.org/10.1016/j.nicl.2018.08.002.[32] DOU Q,CHEN H,YU L Q,et al. Automaticdetection of cerebral microbleeds from MR imagesvia 3D convolutional neural networks[J]. IEEE TransMed Imaging,2016,35(5):1182-1195.[33] SUNDARESAN V,ZAMBONI G,LE HERON C,et al. Automated lesion segmentation with BIANCA:impact of population-level features,classificationalgorithm and locally adaptive thresholding[J/OL].Neuroimage,2019,202:116056[2020-06-20].https://doi.org/10.1016/j.neuroimage.2019.116056.[34] JIANG J Y,LIU T,ZHU W L,et al. UBODetector-A cluster-based,fully automated pipelinefor extracting white matter hyperintensities[J/OL].Neuroimage,2018,174:539-549[2020-06-20].https://doi.org/10.1016/j.neuroimage.2018.03.050.[35] ORTIZ-RAMÓN R,VALDÉS HERNÁNDEZ M DC,GONZÁLEZ-CASTRO V,et al. Identification ofthe presence of ischaemic stroke lesions by meansof texture analysis on brain magnetic resonanceimages[J/OL]. Comput Med Imaging Graph,2019,74:12-24[2020-06-20]. https://doi.org/10.1016/j.compmedimag.2019.02.006.[36] WANG Y B,CATINDIG J A,HILAL S,etal. Multi-stage segmentation of white matterhyperintensity,cortical and lacunar infarcts[J].Neuroimage,2012,60(4):2379-2388. [37] LAMBERT C,SAM NAREAN J,BENJAMIN P,et al. Characterising the grey matter correlates ofleukoaraiosis in cerebral small vessel disease[J/OL].Neuroimage Clin,2015,9:194-205[2020-06-20].https://doi.org/10.1016/j.nicl.2015.07.002.[38] CIULLI S,CITI L,SALVADORI E,et al.Prediction of impaired performance in trail makingtest in MCI patients with small vessel disease usingDTI data[J]. IEEE J Biomed Health Inform,2016,20(4):1026-1033.[39] CHEN H F,HUANG L L,LI H Y,et al.Microstructural disruption of the right inferiorfronto-occipital and inferior longitudinal fasciculuscontributes to WMH-related cognitive impairment[J].CNS Neurosci Ther,2020,26(5):576-588.[40] PANTONI L,MARZI C,POGGESI A,et al. Fractaldimension of cerebral white matter:a consistentfeature for prediction of the cognitive performancein patients with small vessel disease and mildcognitive impairment[J/OL]. Neuroimage Clin,2019,24:101990[2020-06-20]. https://doi.org/10.1016/j.nicl.2019.101990. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||