中国卒中杂志 ›› 2024, Vol. 19 ›› Issue (5): 496-505.DOI: 10.3969/j.issn.1673-5765.2024.05.003

• 专题论坛 • 上一篇    下一篇

临床预测模型常用统计模型及其SAS实现

杨凯璇,谷鸿秋   

  1. 北京 100070 首都医科大学附属北京天坛医院国家神经系统疾病临床医学研究中心
  • 收稿日期:2024-04-15 出版日期:2024-05-20 发布日期:2024-05-20
  • 通讯作者: 谷鸿秋 guhongqiu@yeah.net
  • 基金资助:
    国家自然科学基金项目(72004146)
    北京市医院管理中心“青苗”人才计划(QML20210501)
    北京市医院管理中心“培育”人才计划(PX2021024)

Common Clinical Prediction Statistical Models and SAS Implementation

YANG Kaixuan, GU Hongqiu   

  1. China National Clinical Research Center for Neurological Diseases, Beijing Tiantan Hospital, Capital Medical University, Beijing 100070, China
  • Received:2024-04-15 Online:2024-05-20 Published:2024-05-20
  • Contact: GU Hongqiu, E-mail: guhongqiu@yeah.net

摘要: 临床预测模型在医学研究中的应用越来越广泛,欲达到良好的预测性能,选择正确的模型非常关键。对于预测模型类型的选择,预测结局的类型起着决定性作用。本文从数据类型的角度出发,将结局变量分为连续变量(正态分布、偏态分布)、分类变量(二分类、无序多分类、有序多分类)以及时间-事件变量(无竞争风险、有竞争风险),分别介绍不同类型结局变量的特点、对应的模型、建模案例以及SAS实现程序,以期为研究者构建预测模型提供参考。

关键词: 临床预测模型; 统计模型; 逻辑回归

Abstract: The application of clinical prediction models in medical research is becoming increasingly widespread. To achieve good predictive performance, selecting the correct model is crucial. Regarding the choice of prediction model, the type of prediction outcome plays a decisive role. This paper, from the perspective of data types, divided outcomes into continuous variables (normal distribution, skewed distribution), categorical variables (binary, nominal, ordinal), and time-to-event variables (with or without competing risks), introducing the characteristics of different types of outcomes, the model types, examples and SAS programs to serve as a reference for researchers to develop prediction models.

Key words: Clinical prediction model; Statistical model; Logistic regression

中图分类号: