中国卒中杂志 ›› 2024, Vol. 19 ›› Issue (9): 1066-1076.DOI: 10.3969/j.issn.1673-5765.2024.09.012
周宏宇,李子孝,王拥军
收稿日期:
2024-04-01
出版日期:
2024-09-20
发布日期:
2024-09-20
通讯作者:
王拥军 yongjunwang@ncrcnd.org.cn
ZHOU Hongyu, LI Zixiao, WANG Yongjun
Received:
2024-04-01
Online:
2024-09-20
Published:
2024-09-20
Contact:
WANG Yongjun, E-mail: yongjunwang@ncrcnd.org.cn
摘要: 大脑年龄作为一种个体化的脑健康影像学表型,是衡量大脑衰老程度的新型神经影像学生物标志物。个体大脑年龄与实际年龄之间的偏差,即脑年龄估值差,反映了大脑衰老的轨迹和速率。既往研究表明,缺血性卒中患者的脑年龄估值差升高与其预后不良存在显著关联。此外,缺血性脑损伤加速了卒中患者的大脑衰老过程,提示大脑衰老与缺血性卒中之间可能形成恶性循环。本文就大脑年龄预测的方法学框架、影响大脑衰老速率的因素、大脑年龄与缺血性卒中的关联及多组学数据联合分析的研究进展进行综述,旨在为卒中相关的衰老生物学研究提供新的视角。
中图分类号:
周宏宇, 李子孝, 王拥军. 基于影像组学预测大脑年龄与缺血性卒中的研究进展[J]. 中国卒中杂志, 2024, 19(9): 1066-1076.
ZHOU Hongyu, LI Zixiao, WANG Yongjun. Research Progress on Radiomics-Based Brain Age Prediction and Ischemic Stroke[J]. Chinese Journal of Stroke, 2024, 19(9): 1066-1076.
[1] COLE J H,FRANKE K. Predicting age using neuroimaging:innovative brain ageing biomarkers[J]. Trends Neurosci,2017,40(12):681-690. [2] ELLIOTT M L,BELSKY D W,KNODT A R,et al. Brain-age in midlife is associated with accelerated biological aging and cognitive decline in a longitudinal birth cohort[J]. Mol Psychiatry,2021,26(8):3829-3838. [3] HAHN T,ERNSTING J,WINTER N R,et al. An uncertainty-aware,shareable,and transparent neural network architecture for brain-age modeling[J/OL]. Sci Adv,2022,8(1):eabg9471[2024-01-06]. https://doi.org/10.1126/sciadv.abg9471. [4] MADOLE J W,RITCHIE S J,COX S R,et al. Aging-sensitive networks within the human structural connectome are implicated in late-life cognitive declines[J]. Biol Psychiatry,2021,89(8):795-806. [5] WANG J,KNOL M J,TIULPIN A,et al. Gray matter age prediction as a biomarker for risk of dementia[J]. Proc Natl Acad Sci U S A,2019,116(42):21213-21218. [6] XI Y B,WU X S,CUI L B,et al. Neuroimaging-based brain-age prediction of first-episode schizophrenia and the alteration of brain age after early medication[J/OL]. Br J Psychiatry,2021,1-8[2024-01-06]. https://doi.org/10.1192/bjp.2021.169. [7] DE LANGE A G,ANATüRK M,SURI S,et al. Multimodal brain-age prediction and cardiovascular risk:the Whitehall Ⅱ MRI sub-study[J/OL]. Neuroimage,2020,222:117292[2024-01-06]. https://doi.org/10.1016/j.neuroimage.2020.117292. [8] EGOROVA N,LIEM F,HACHINSKI V,et al. Predicted brain age after stroke[J/OL]. Front Aging Neurosci,2019,11:348[2024-01-06]. https://doi.org/10.3389/fnagi.2019.00348. [9] MISHRA S,BEHESHTI I,KHANNA P. A review of neuroimaging-driven brain age estimation for identification of brain disorders and health conditions[J/OL]. IEEE Rev Biomed Eng,2023,16:371-385[2024-01-06]. https://doi.org/10.1109/RBME.2021.3107372. [10] BASHYAM V M,ERUS G,DOSHI J,et al. MRI signatures of brain age and disease over the lifespan based on a deep brain network and 14 468 individuals worldwide[J]. Brain,2020,143(7):2312-2324. [11] JIANG R T,SCHEINOST D,ZUO N M,et al. A neuroimaging signature of cognitive aging from whole-brain functional connectivity[J/OL]. Adv Sci(Weinh),2022,9(24):e2201621[2024-01-06]. https://doi.org/10.1002/advs.202201621. [12] CAI H J,GAO Y,LIU M H. Graph transformer geometric learning of brain networks using multimodal mr images for brain age estimation[J]. IEEE Trans Med Imaging,2023,42(2):456-466. [13] CHEN M X,WANG Y Q,SHI Y T,et al. Brain age prediction based on quantitative susceptibility mapping using the segmentation transformer[J]. IEEE J Biomed Health Inform,2024,28(2):1012-1021. [14] JONES D T,LEE J,TOPOL E J. Digitising brain age[J/OL]. Lancet,2022,400(10357):988[2024-01-06]. https://doi.org/10.1016/S0140-6736(22)01782-2. [15] ASHBURNER J. SPM:a history[J]. Neuroimage,2012,62(2):791-800. [16] ASHBURNER J,FRISTON K J. Voxel-based morphometry—the methods[J]. Neuroimage,2000,11(6 Pt 1):805-821. [17] JONSSON B A,BJORNSDOTTIR G,THORGEIRSSON T E,et al. Brain age prediction using deep learning uncovers associated sequence variants[J/OL]. Nat Commun,2019,10(1):5409[2024-01-06]. https://doi.org/10.1038/s41467-019-13163-9. [18] DUFUMIER B,GRIGIS A,VICTOR J,et al. OpenBHB:a large-scale multi-site brain MRI dataset for age prediction and debiasing[J/OL]. Neuroimage,2022,263:119637[2024-01-06]. https://doi.org/10.1016/j.neuroimage.2022.119637. [19] WENZEL F,MEYER C,STEHLE T,et al. Rapid fully automatic segmentation of subcortical brain structures by shape-constrained surface adaptation[J/OL]. Med Image Anal,2018,46:146-161[2024-01-06]. https://doi.org/10.1016/j.media.2018.03.001. [20] FRANKE K,ZIEGLER G,KLÖPPEL S,et al. Estimating the age of healthy subjects from T1-weighted MRI scans using kernel methods:exploring the influence of various parameters[J]. Neuroimage,2010,50(3):883-892. [21] XIFRA-PORXAS A,GHOSH A,MITSIS G D,et al. Estimating brain age from structural MRI and MEG data:insights from dimensionality reduction techniques[J/OL]. Neuroimage,2021,231:117822[2024-01-06]. https://doi.org/10.1016/j.neuroimage.2021.117822. [22] VARIKUTI D P,GENON S,SOTIRAS A,et al. Evaluation of non-negative matrix factorization of grey matter in age prediction[J/OL]. Neuroimage,2018,173:394-410[2024-01-06]. https://doi.org/10.1016/j.neuroimage.2018.03.007. [23] COLE J H,POUDEL R P K,TSAGKRASOULIS D,et al. Predicting brain age with deep learning from raw imaging data results in a reliable and heritable biomarker[J/OL]. Neuroimage,2017,163:115-124[2024-01-06]. https://doi.org/10.1016/j.neuroimage.2017.07.059. [24] PENG H,GONG W K,BECKMANN C F,et al. Accurate brain age prediction with lightweight deep neural networks[J/OL]. Med Image Anal,2021,68:101871[2024-01-06]. https://doi.org/10.1016/j.media.2020.101871. [25] DUBINA T L,DYUNDIKOVA V A,ZHUK E V. Biological age and its estimation. Ⅱ. Assessment of biological age of albino rats by multiple regression analysis[J]. Exp Gerontol,1983,18(1):5-18. [26] SONE D,BEHESHTI I,MAIKUSA N,et al. Neuroimaging-based brain-age prediction in diverse forms of epilepsy:a signature of psychosis and beyond[J]. Mol Psychiatry,2021,26(3):825-834. [27] DIAS M F M,CARVALHO P,DUARTE J V,et al. Deformation fields:a new source of information to predict brain age[J/OL]. J Neural Eng,2022,19(3):6025[2024-01-06]. https://doi.org/10.1088/1741-2552/ac7003. [28] MASSETT R J,MAHER A S,IMMS P E,et al. Regional neuroanatomic effects on brain age inferred using magnetic resonance imaging and ridge regression[J]. J Gerontol A Biol Sci Med Sci,2023,78(6):872-881. [29] COLE J H. Multimodality neuroimaging brain-age in UK Biobank:relationship to biomedical,lifestyle,and cognitive factors[J/OL]. Neurobiol Aging,2020,92:34-42[2024-01-06]. https://doi.org/10.1016/j.neurobiolaging.2020.03.014. [30] MODABBERNIA A,WHALLEY H C,GLAHN D C,et al. Systematic evaluation of machine learning algorithms for neuroanatomically-based age prediction in youth[J]. Hum Brain Mapp,2022,43(17):5126-5140. [31] BECK D,DE LANGE A G,PEDERSEN M L,et al. Cardiometabolic risk factors associated with brain age and accelerate brain ageing[J]. Hum Brain Mapp,2022,43(2):700-720. [32] COLE J H,MARIONI R E,HARRIS S E,et al. Brain age and other bodily‘ages’:implications for neuropsychiatry[J]. Mol Psychiatry,2019,24(2):266-281. [33] WANG H Z,TREDER M S,MARSHALL D,et al. A skewed loss function for correcting predictive bias in brain age prediction[J]. IEEE Trans Med Imaging,2023,42(6):1577-1589. [34] LE T T,KUPLICKI R T,MCKINNEY B A,et al. A nonlinear simulation framework supports adjusting for age when analyzing BrainAGE[J/OL]. Front Aging Neurosci,2018,10:317[2024-01-06]. https://doi.org/10.3389/fnagi.2018.00317. [35] CHENG J,LIU Z Y,GUAN H,et al. Brain age estimation from MRI using cascade networks with ranking loss[J]. IEEE Trans Med Imaging,2021,40(12):3400-3412. [36] SALIH A,NICHOLS T,SZABO L,et al. Conceptual overview of biological age estimation[J]. Aging Dis,2023,14(3):583-588. [37] HE S,FENG Y F,ELLEN GRANT P,et al. Deep relation learning for regression and its application to brain age estimation[J]. IEEE Trans Med Imaging,2022,41(9):2304-2317. [38] HE S,GRANT P E,OU Y M. Global-local transformer for brain age estimation[J]. IEEE Trans Med Imaging,2022,41(1):213-224. [39] KLEMERA P,DOUBAL S. A new approach to the concept and computation of biological age[J]. Mech Ageing Dev,2006,127(3):240-248. [40] WAGEN A Z,COATH W,KESHAVAN A,et al. Life course,genetic,and neuropathological associations with brain age in the 1946 British Birth cohort:a population-based study[J/OL]. Lancet Healthy Longev,2022,3(9):e607-e616[2024-01-06]. https://doi.org/10.1016/S2666-7568(22)00167-2. [41] WRIGGLESWORTH J,HARDING I H,WARD P,et al. Factors influencing change in brain-predicted age difference in a cohort of healthy older individuals[J]. J Alzheimers Dis Rep,2022,6(1):163-176. [42] BISKUP E,QUEVENCO F C,FERRETTI M T,et al. Sex differences in brain metabolic activity:beyond the concept of brain age[J]. Proc Natl Acad Sci U S A,2019,116(22):10630-10631. [43] SANFORD N,GE R Y,ANTONIADES M,et al. Sex differences in predictors and regional patterns of brain age gap estimates[J]. Hum Brain Mapp,2022,43(15):4689-4698. [44] SUBRAMANIAPILLAI S,SURI S,BARTH C,et al. Sex- and age-specific associations between cardiometabolic risk and white matter brain age in the UK Biobank cohort[J]. Hum Brain Mapp,2022,43(12):3759-3774. [45] FRANKE K,HAGEMANN G,SCHLEUSSNER E,et al. Changes of individual BrainAGE during the course of the menstrual cycle[J/OL]. Neuroimage,2015,115:1-6[2024-01-06]. https://doi.org/10.1016/j.neuroimage.2015.04.036. [46] RAUSEO E,SALIH A,RAISI-ESTABRAGH Z,et al. Ischemic heart disease and vascular risk factors are associated with accelerated brain aging[J]. JACC Cardiovasc Imaging,2023,16(7):905-915. [47] BECK D,DE LANGE A G,ALNÆS D,et al. Adipose tissue distribution from body MRI is associated with cross-sectional and longitudinal brain age in adults[J/OL]. Neuroimage Clin,2022,33:102949[2024-01-06]. https://doi.org/10.1016/j.nicl.2022.102949. [48] LEVAKOV G,KAPLAN A,YASKOLKA MEIR A,et al. The effect of weight loss following 18 months of lifestyle intervention on brain age assessed with resting-state functional connectivity[J/OL]. Elife,2023,12:e83604[2024-01-06]. https://doi.org/10.7554/eLife.83604. [49] ZEIGHAMI Y,DADAR M,DAOUST J,et al. Impact of weight loss on brain age:improved brain health following bariatric surgery[J/OL]. Neuroimage,2022,259:119415[2024-01-06]. https://doi.org/10.1016/j.neuroimage.2022.119415. [50] MO C,WANG J T,YE Z Y,et al. Evaluating the causal effect of tobacco smoking on white matter brain aging:a two-sample Mendelian randomization analysis in UK Biobank[J]. Addiction,2023,118(4):739-749. [51] LINLI Z Q,FENG J F,ZHAO W,et al. Associations between smoking and accelerated brain ageing[J/OL]. Prog Neuropsychopharmacol Biol Psychiatry,2022,113:110471[2024-01-06]. https://doi:10.1016/j.pnpbp.2021.110471. [52] FUNK-WHITE M,WING D,EYLER L T,et al. Neuroimaging-derived predicted brain age and alcohol use among community-dwelling older adults[J]. Am J Geriatr Psychiatry,2023,31(9):669-678. [53] GUGGENMOS M,SCHMACK K,SEKUTOWICZ M,et al. Quantitative neurobiological evidence for accelerated brain aging in alcohol dependence[J/OL]. Transl Psychiatry,2017,7(12):1279[2024-01-06]. https://doi.org/10.1038/s41398-017-0037-y. [54] BEHESHTI I. Cocaine destroys gray matter brain cells and accelerates brain aging[J/OL]. Biology(Basel),2023,12(5):752[2024-01-06]. https://doi.org/10.3390/biology12050752. [55] KNODT A R,MEIER M H,AMBLER A,et al. Diminished structural brain integrity in long-term cannabis users reflects a history of polysubstance use[J]. Biol Psychiatry,2022,92(11):861-870. [56] BUSBY N,NEWMAN-NORLUND S,SAYERS S,et al. Lower socioeconomic status is associated with premature brain aging[J/OL]. Neurobiol Aging,2023,130:135-140[2024-01-06]. https://doi.org/10.1016/j.neurobiolaging.2023.06.012. [57] JAWINSKI P,MARKETT S,DREWELIES J,et al. Linking brain age gap to mental and physical health in the Berlin Aging study Ⅱ[J/OL]. Front Aging Neurosci,2022,14:791222[2024-01-06]. https://doi.org/10.3389/fnagi.2022.791222. [58] LAY-YEE R,HARIRI A R,KNODT A R,et al. Social isolation from childhood to mid-adulthood:is there an association with older brain age?[J] Psychol Med,2023,53(16):7874-7882. [59] SONE D,BEHESHTI I,SHINAGAWA S,et al. Neuroimaging-derived brain age is associated with life satisfaction in cognitively unimpaired elderly:a community-based study[J/OL]. Transl Psychiatry,2022,12(1):25[2024-01-06]. https://doi.org/10.1038/s41398-022-01793-5. [60] WEIHS A,FRENZEL S,WITTFELD K,et al. Associations between sleep apnea and advanced brain aging in a large-scale population study[J/OL]. Sleep,2021,44(3):zsaa204[2024-01-06]. https://doi.org/10.1093/sleep/zsaa204. [61] RAMDUNY J,BASTIANI M,HUEDEPOHL R,et al. The association between inadequate sleep and accelerated brain ageing[J/OL]. Neurobiol Aging,2022,114:1-14[2024-01-06]. https://doi.org/10.1016/j.neurobiolaging.2022.02.005. [62] STOLICYN A,LYALL L M,LYALL D M,et al. Comprehensive assessment of sleep duration,insomnia,and brain structure within the UK Biobank cohort[J/OL]. Sleep,2024,47(2):zsad274[2024-01-06]. https://doi.org/10.1093/sleep/zsad274. [63] DINTICA C S,HABES M,ERUS G,et al. Elevated blood pressure is associated with advanced brain aging in mid-life:a 30-year follow-up of the CARDIA study[J]. Alzheimers Dement,2023,19(3):924-932. [64] FENG L,YE Z Y,MO C,et al. Elevated blood pressure accelerates white matter brain aging among late middle-aged women:a Mendelian randomization study in the UK Biobank[J]. J Hypertens,2023,41(11):1811-1820. [65] FRANKE K,GASER C,MANOR B,et al. Advanced BrainAGE in older adults with type 2 diabetes mellitus[J/OL]. Front Aging Neurosci,2013,5:90[2024-01-06]. https://doi.org/10.3389/fnagi.2013.00090. [66] HABES M,JACOBSON A M,BRAFFETT B H,et al. Patterns of regional brain atrophy and brain aging in middle- and older-aged adults with type 1 diabetes[J/OL]. JAMA Netw Open,2023,6(6):e2316182[2024-01-06]. https://doi.org/10.1001/jamanetworkopen.2023.16182. [67] JHA M K,CHIN FATT C R,MINHAJUDDIN A,et al. Accelerated brain aging in individuals with diabetes:association with poor glycemic control and increased all-cause mortality[J/OL]. Psychoneuroendocrinology,2022,145:105921[2024-01-06]. https://doi.org/10.1016/j.psyneuen.2022.105921. [68] HUNG P S,ZHANG J Y,NOORANI A,et al. Differential expression of a brain aging biomarker across discrete chronic pain disorders[J]. Pain,2022,163(8):1468-1478. [69] KUCHCINSKI G,RUMETSHOFER T,ZERVIDES K A,et al. MRI BrainAGE demonstrates increased brain aging in systemic lupus erythematosus patients[J/OL]. Front Aging Neurosci,2023,15:1274061[2024-01-06]. https://doi.org/10.3389/fnagi.2023.1274061. [70] LIEW S L,SCHWEIGHOFER N,COLE J H,et al. Association of brain age,lesion volume,and functional outcome in patients with stroke[J/OL]. Neurology,2023,100(20):e2103-e2113[2024-01-06]. https://doi.org/10.1212/WNL.0000000000207219. [71] BRETZNER M,BONKHOFF A K,SCHIRMER M D,et al. Radiomics-derived brain age predicts functional outcome after acute ischemic stroke[J/OL]. Neurology,2023,100(8):e822-e833[2024-01-06]. https://doi.org/10.1212/WNL.0000000000201596. [72] AAMODT E B,ALNÆS D,DE LANGE A G,et al. Longitudinal brain age prediction and cognitive function after stroke[J/OL]. Neurobiol Aging,2023,122:55-64[2024-01-06]. https://doi.org/10.1016/j.neurobiolaging.2022.10.007. [73] SHI Y C,MAO H X,GAO Q Q,et al. Potential of brain age in identifying early cognitive impairment in subcortical small-vessel disease patients[J/OL]. Front Aging Neurosci,2022,14:973054[2024-01-06]. https://doi.org/10.3389/fnagi.2022.973054. [74] KRISTINSSON S,BUSBY N,RORDEN C,et al. Brain age predicts long-term recovery in post-stroke aphasia[J/OL]. Brain Commun,2022,4(5):fcac252[2024-01-06]. https://doi.org/10.1093/braincomms/fcac252. [75] BUSBY N,WILMSKOETTER J,GLEICHGERRCHT E,et al. Advanced brain age and chronic poststroke aphasia severity[J/OL]. Neurology,2023,100(11):e1166-e1176[2024-01-06]. https://doi.org/10.1212/WNL.0000000000201693. [76] WILMSKOETTER J,BUSBY N,HE X S,et al. Dynamic network properties of the superior temporal gyrus mediate the impact of brain age gap on chronic aphasia severity[J/OL]. Commun Biol,2023,6(1):727[2024-01-06]. https://doi.org/10.1038/s42003-023-05119-z. [77] LEONARDSEN E H,VIDAL-PIÑEIRO D,ROE J M,et al. Genetic architecture of brain age and its causal relations with brain and mental disorders[J]. Mol Psychiatry,2023,28(7):3111-3120. [78] SMITH S M,ELLIOTT L T,ALFARO-ALMAGRO F,et al. Brain aging comprises many modes of structural and functional change with distinct genetic and biophysical associations[J/OL]. Elife,2020,9:e52677[2024-01-06]. https://doi.org/10.7554/eLife.52677. [79] GIALLUISI A,SANTORO A,TIROZZI A,et al. Epidemiological and genetic overlap among biological aging clocks:new challenges in biogerontology[J/OL]. Ageing Res Rev,2021,72:101502[2024-01-06]. https://doi.org/10.1016/j.arr.2021.101502. [80] YU J H,MATHI KANCHI M,RAWTAER I,et al. Differences between multimodal brain-age and chronological-age are linked to telomere shortening[J/OL]. Neurobiol Aging,2022,115:60-69[2024-01-06]. https://doi.org/10.1016/j.neurobiolaging.2022.03.015. [81] ZHANG X,CHENG S,LI Z X,et al. Telomere length and stroke recurrence after ischemic stroke and TIA[J]. Int J Stroke,2023,18(2):208-214. [82] WAZIRY R,GU Y,BOEHME A K,et al. Measures of aging biology in saliva and blood as novel biomarkers for stroke and heart disease in older adults[J/OL]. Neurology,2023,101(23):e2355-e2363[2024-01-06]. https://doi.org/10.1212/WNL.0000000000207909. [83] REN B Y,WU Y T,HUANG L M,et al. Deep transfer learning of structural magnetic resonance imaging fused with blood parameters improves brain age prediction[J]. Hum Brain Mapp,2022,43(5):1640-1656. [84] HAHN T,FISCH L,ERNSTING J,et al. From‘loose fitting’to high-performance,uncertainty-aware brain-age modelling[J/OL]. Brain,2021,144(3):e31[2024-01-06]. https://doi.org/10.1093/brain/awaa454. [85] JÖNEMO J,AKBAR M U,KÄMPE R,et al. Efficient brain age prediction from 3D MRI volumes using 2D projections[J/OL]. Brain Sci,2023,13(9):1329[2024-01-06]. https://doi.org/10.3390/brainsci13091329. [86] DARTORA C,MARSEGLIA A,MÅRTENSSON G,et al. A deep learning model for brain age prediction using minimally preprocessed T1W images as input[J/OL]. Front Aging Neurosci,2024,15:1303036[2024-01-06]. https://doi.org/10.3389/fnagi.2023.1303036. [87] ZHANG Y,XIE R,BEHESHTI I,et al. Improving brain age prediction with anatomical feature attention-enhanced 3D-CNN[J/OL]. Comput Biol Med,2024,169:107873[2024-01-06]. https://doi.org/10.1016/j.compbiomed.2023.107873. [88] BASS C,SILVA M D,SUDRE C,et al. ICAM-Reg:interpretable classification and regression with feature attribution for mapping neurological phenotypes in individual scans[J]. IEEE Trans Med Imaging,2023,42(4):959-970. [89] TIAN L X,MA L,WANG L L. Alterations of functional connectivities from early to middle adulthood:clues from multivariate pattern analysis of resting-state fMRI data[J/OL]. Neuroimage,2016,129:389-400[2024-01-06]. https://doi.org/10.1016/j.neuroimage.2016.01.039. [90] AL ZOUBI O,KI WONG C,KUPLICKI R T,et al. Predicting age from brain EEG signals—a machine learning approach[J/OL]. Front Aging Neurosci,2018,10:184[2024-01-06]. https://doi.org/10.3389/fnagi.2018.00184. [91] BRUSINI I,MACNICOL E,KIM E,et al. MRI-derived brain age as a biomarker of ageing in rats:validation using a healthy lifestyle intervention[J/OL]. Neurobiol Aging,2022,109:204-215[2024-01-06]. https://doi.org/10.1016/j.neurobiolaging. 2021.10.004. [92] HE S,GUAN Y,CHENG C H,et al. Human-to-monkey transfer learning identifies the frontal white matter as a key determinant for predicting monkey brain age[J/OL]. Front Aging Neurosci,2023,15:1249415[2024-01-06]. https://doi.org/10.3389/fnagi.2023.1249415. |
[1] | 范萍, 岳奎涛, 李爱媛, 赵喆, 谢海, 吴春艳(第一作者). 影像组学在急性缺血性卒中中的应用进展[J]. 中国卒中杂志, 2023, 18(8): 952-957. |
[2] | 杨佳蕾, 陈思玎, 孟霞, 姜勇, 王拥军. 基于机器学习预测血糖异常急性缺血性卒中患者预后模型研究[J]. 中国卒中杂志, 2022, 17(07): 730-736. |
[3] | 张佳丽, 陈楚歆, 张心怡, 张宁, 王春雪. 褪黑素抗衰老机制及其与缺血性卒中的关系[J]. 中国卒中杂志, 2022, 17(07): 791-796. |
[4] | 姜季委, 王琳琳, 蒋施瑞, 徐俊, 王拥军. 脑健康服务在社会和公平方面的挑战——脑健康服务用户手册(第6部分)[J]. 中国卒中杂志, 2022, 17(04): 393-397. |
[5] | 译者:李汶逸, 张源, 姜季委, 徐俊, 王拥军. 痴呆相关的可干预危险因素及发病风险预测——脑健康服务用户手册(第2部分)[J]. 中国卒中杂志, 2022, 17(02): 149-156. |
[6] | 译者:孙梦凡, 贾紫嫣, 王琳琳, 姜季委, 徐俊, 王拥军. 多领域干预:精准降低痴呆风险实施方案的最新研究进展和未来方向——脑健康服务用户手册(第4部分)[J]. 中国卒中杂志, 2022, 17(02): 165-175. |
[7] | 译者:郑华光, 李雯博, 王瑞青, 王拥军. 脑健康服务:组织、结构和实施的挑战——脑健康服务用户手册(第1部分)[J]. 中国卒中杂志, 2022, 17(01): 85-92. |
[8] | 徐运. 衰老相关的脑小血管病诊疗现状和亟待解决的问题[J]. 中国卒中杂志, 2020, 15(04): 339-341. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||