中国卒中杂志 ›› 2024, Vol. 19 ›› Issue (12): 1409-1418.DOI: 10.3969/j.issn.1673-5765.2024.12.007
程柳杨1,樊哲廷2,夏健1,3
收稿日期:
2024-10-10
出版日期:
2024-12-20
发布日期:
2024-12-20
通讯作者:
夏健 xjian1216@csu.edu.cn
基金资助:
CHENG Liuyang1, FAN Zheting2, XIA Jian1,3
Received:
2024-10-10
Online:
2024-12-20
Published:
2024-12-20
Contact:
XIA Jian, E-mail: xjian1216@csu.edu.cn
摘要: 氧化脂质是由多不饱和脂肪酸氧化产生的生物活性脂质。近年来,越来越多的研究证明氧化脂质可通过炎症反应、氧化应激、细胞凋亡、血管稳态等多种机制影响脑血管病的发生发展。另外,基于代谢组学的临床研究发现氧化脂质在脑血管病不同表型或预后患者中的水平存在差异。研究氧化脂质在脑血管病中的作用有助于为脑血管病的诊断、治疗及预防提供新思路、新方法。
中图分类号:
程柳杨, 樊哲廷, 夏健. 氧化脂质在脑血管病中的研究进展[J]. 中国卒中杂志, 2024, 19(12): 1409-1418.
CHENG Liuyang, FAN Zheting, XIA Jian. Advances of Oxylipins in Cerebrovascular Diseases[J]. Chinese Journal of Stroke, 2024, 19(12): 1409-1418.
[1] GBD 2016 Stroke Collaborators. Global,regional,and national burden of stroke,1990—2016:a systematic analysis for the global burden of disease study 2016[J]. Lancet Neurol,2019,18(5):439-458. [2] GBD 2019 Stroke Collaborators. Global,regional,and national burden of stroke and its risk factors,1990—2019:a systematic analysis for the global burden of disease study 2019[J]. Lancet Neurol,2021,20(10):795-820. [3] 王拥军,李子孝,谷鸿秋,等. 中国卒中报告2020(中文版)(1)[J]. 中国卒中杂志,2022,17(5):433-447. WANG Y J,LI Z X,GU H Q,et al. China stroke statistics 2020(1)[J]. Chin J Stroke,2022,17(5):433-447. [4] HAYASHI D,MOUCHLIS V D,DENNIS E A. Omega-3 versus Omega-6 fatty acid availability is controlled by hydrophobic site geometries of phospholipase A2s[J/OL]. J Lipid Res,2021,62:100113[2024-10-07]. https://doi.org/10.1016/j.jlr.2021.100113. [5] MILNE G L,DAI Q,ROBERTS L J,2nd. The isoprostanes—25 years later[J]. Biochim Biophys Acta,2015,1851(4):433-445. [6] GABBS M,LENG S,DEVASSY J G,et al. Advances in our understanding of oxylipins derived from dietary PUFAs[J]. Adv Nutr,2015,6(5):513-540. [7] HARRIS T R,HAMMOCK B D. Soluble epoxide hydrolase:gene structure,expression and deletion[J]. Gene,2013,526(2):61-74. [8] TOURDOT B E,AHMED I,HOLINSTAT M. The emerging role of oxylipins in thrombosis and diabetes[J/OL]. Front Pharmacol,2014,4:176[2024-10-07]. https://doi.org/10.3389/fphar.2013.00176. [9] YANG C C,HSIAO L D,SHIH Y F,et al. Induction of heme oxygenase-1 by 15d-prostaglandin J2 mediated via a ROS-dependent Sp1 and AP-1 cascade suppresses lipopolysaccharide-triggered interleukin-6 expression in mouse brain microvascular endothelial cells[J/OL]. Antioxidants(Basel),2022,11(4):719[2024-10-07]. https://doi.org/10.3390/antiox11040719. [10] LIU H,LI W J,AHMAD M,et al. Modification of ubiquitin-C-terminal hydrolase-L1 by cyclopentenone prostaglandins exacerbates hypoxic injury[J]. Neurobiol Dis,2011,41(2):318-328. [11] XU X H,HUA Y N,ZHANG H L,et al. Greater stress protein expression enhanced by combined prostaglandin A1 and lithium in a rat model of focal ischemia[J]. Acta Pharmacol Sin,2007,28(8):1097-1104. [12] ASKENASE M H,GOODS B A,BEATTY H E,et al. Longitudinal transcriptomics define the stages of myeloid activation in the living human brain after intracerebral hemorrhage[J/OL]. Sci Immunol,2021,6(56):eabd6279[2024-10-07]. https://doi.org/10.1126/sciimmunol.abd6279. [13] GAO L,SHI H,SHERCHAN P,et al. Inhibition of lysophosphatidic acid receptor 1 attenuates neuroinflammation via PGE2/EP2/NOX2 signalling and improves the outcome of intracerebral haemorrhage in mice[J/OL]. Brain Behav Immun,2021,91:615-626[2024-10-07]. https://doi.org/10.1016/j.bbi.2020.09.032. [14] JIANG J X,DINGLEDINE R. Prostaglandin receptor EP2 in the crosshairs of anti-inflammation,anti-cancer,and neuroprotection[J]. Trends Pharmacol Sci,2013,34(7):413-423. [15] LECLERC J L,LAMPERT A S,DILLER M A,et al. PGE2-EP3 signaling exacerbates intracerebral hemorrhage outcomes in 24-mo-old mice[J/OL]. Am J Physiol Heart Circ Physiol,2016,310(11):H1725-H1734[2024-10-07]. https://doi.org/10.1152/ajpheart.00638.2015. [16] GAETANI P,MARZATICO F,RODRIGUEZ Y BAENA R,et al. Arachidonic acid metabolism and pathophysiologic aspects of subarachnoid hemorrhage in rats[J]. Stroke,1990,21(2):328-332. [17] RODRIGUEZ Y BAENA R,GAETANI P,PAOLETTI P. A study on cisternal CSF levels of arachidonic acid metabolites after aneurysmal subarachnoid hemorrhage[J]. J Neurol Sci,1988,84(2/3):329-335. [18] CHYATTE D. Prevention of chronic cerebral vasospasm in dogs with ibuprofen and high-dose methylprednisolone[J]. Stroke,1989,20(8):1021-1026. [19] SEO K W,LEE S J,KIM C E,et al. Participation of 5-lipoxygenase-derived LTB4 in 4-hydroxynonenal-enhanced MMP-2 production in vascular smooth muscle cells[J]. Atherosclerosis,2010,208(1):56-61. [20] CIPOLLONE F,MEZZETTI A,FAZIA M L,et al. Association between 5-lipoxygenase expression and plaque instability in humans[J]. Arterioscler Thromb Vasc Biol,2005,25(8):1665-1670. [21] DEPUYDT M A C,VLASWINKEL F D,HEMME E,et al. Blockade of the BLT1-LTB4 axis does not affect mast cell migration towards advanced atherosclerotic lesions in LDLr-/- mice[J/OL]. Sci Rep,2022,12(1):18362[2024-10-07]. https://doi.org/10.1038/s41598-022-23162-4. [22] HIJIOKA M,FUTOKORO R,OHTO-NAKANISHI T,et al. Microglia-released leukotriene B4 promotes neutrophil infiltration and microglial activation following intracerebral hemorrhage[J/OL]. Int Immunopharmacol,2020,85:106678[2024-10-07]. https://doi.org/10.1016/j.intimp.2020.106678. [23] YE Z N,ZHUANG Z,WU L Y,et al. Expression and cell distribution of leukotriene B4 receptor 1 in the rat brain cortex after experimental subarachnoid hemorrhage[J/OL]. Brain Res,2016,1652:127-134[2024-10-07]. https://doi.org/10.1016/j.brainres.2016.10.006. [24] YE Z N,WU L Y,LIU J P,et al. Inhibition of leukotriene B4 synthesis protects against early brain injury possibly via reducing the neutrophil-generated inflammatory response and oxidative stress after subarachnoid hemorrhage in rats[J/OL]. Behav Brain Res,2018,339:19-27[2024-10-07]. https://doi.org/10.1016/j.bbr.2017.11.011. [25] MINAMI N,TANI E,YOKOTA M,et al. Immunohistochemistry of leukotriene C4 in experimental cerebral vasospasm[J]. Acta Neuropathol,1991,81(4):401-407. [26] VITAL S A,BECKER F,HOLLOWAY P M,et al. Formyl-peptide receptor 2/3/lipoxin a4 receptor regulates neutrophil-platelet aggregation and attenuates cerebral inflammation:impact for therapy in cardiovascular disease[J]. Circulation,2016,133(22):2169-2179. [27] SMITH H K,GIL C D,OLIANI S M,et al. Targeting formyl peptide receptor 2 reduces leukocyte-endothelial interactions in a murine model of stroke[J]. FASEB J,2015,29(5):2161-2171. [28] WU L,MIAO S,ZOU L B,et al. Lipoxin A4 inhibits 5-lipoxygenase translocation and leukotrienes biosynthesis to exert a neuroprotective effect in cerebral ischemia/reperfusion injury[J]. J Mol Neurosci,2012,48(1):185-200. [29] HAWKINS K E,DEMARS K M,SINGH J,et al. Neurovascular protection by post-ischemic intravenous injections of the lipoxin A4 receptor agonist,BML-111,in a rat model of ischemic stroke[J]. J Neurochem,2014,129(1):130-142. [30] SONG Y Q,YANG Y,CUI Y,et al. Lipoxin A4 methyl ester reduces early brain injury by inhibition of the nuclear factor kappa B(NF-κB)-dependent matrix metallopeptidase 9(MMP-9)pathway in a rat model of intracerebral hemorrhage[J/OL]. Med Sci Monit,2019,25:1838-1847[2024-10-07]. https://doi.org/10.12659/MSM.915119. [31] GUO Z D,HU Q,XU L,et al. Lipoxin A4 reduces inflammation through formyl peptide receptor 2/p38 MAPK signaling pathway in subarachnoid hemorrhage rats[J]. Stroke,2016,47(2):490-497. [32] LIU G J,TAO T,WANG H,et al. Functions of resolvin D1-ALX/FPR2 receptor interaction in the hemoglobin-induced microglial inflammatory response and neuronal injury[J/OL]. J Neuroinflammation,2020,17(1):239[2024-10-07]. https://doi.org/10.1186/s12974-020-01918-x. [33] DUNN K M,RENIC M,FLASCH A K,et al. Elevated production of 20-HETE in the cerebral vasculature contributes to severity of ischemic stroke and oxidative stress in spontaneously hypertensive rats[J/OL]. Am J Physiol Heart Circ Physiol,2008,295(6):H2455-H2465[2024-10-07]. https://doi.org/10.1152/ajpheart.00512.2008. [34] LI Z Z,MCCONNELL H L,STACKHOUSE T L,et al. Increased 20-HETE signaling suppresses capillary neurovascular coupling after ischemic stroke in regions beyond the infarct[J/OL]. Front Cell Neurosci,2021,15:762843[2024-10-07]. https://doi.org/10.3389/fncel.2021.762843. [35] MIYATA N,SEKI T,TANAKA Y,et al. Beneficial effects of a new 20-hydroxyeicosatetraenoic acid synthesis inhibitor,TS-011 [N-(3-chloro-4-morpholin-4-yl)phenyl-N’-hydroxyimido formamide],on hemorrhagic and ischemic stroke[J]. J Pharmacol Exp Ther,2005,314(1):77-85. [36] RENIC M,KLAUS J A,OMURA T,et al. Effect of 20-HETE inhibition on infarct volume and cerebral blood flow after transient middle cerebral artery occlusion[J]. J Cereb Blood Flow Metab,2009,29(3):629-639. [37] CAMBJ-SAPUNAR L,YU M,HARDER D R,et al. Contribution of 5-hydroxytryptamine1B receptors and 20-hydroxyeiscosatetraenoic acid to fall in cerebral blood flow after subarachnoid hemorrhage[J]. Stroke,2003,34(5):1269-1275. [38] DONNELLY M K,CRAGO E A,CONLEY Y P,et al. 20-HETE is associated with unfavorable outcomes in subarachnoid hemorrhage patients[J]. J Cereb Blood Flow Metab,2015,35(9):1515-1522. [39] ZHU Y M,CHEN L,LIU W J,et al. Hypoxia-induced 15-HETE enhances the constriction of internal carotid arteries by down-regulating potassium channels[J]. J Neurol Sci,2010,295(1/2):92-96. [40] HIRASHIMA Y,DOSHI M,HAYASHI N,et al. Plasma platelet-activating factor-acetyl hydrolase activity and the levels of free forms of biomarker of lipid peroxidation in cerebrospinal fluid of patients with aneurysmal subarachnoid hemorrhage[J]. Neurosurgery,2012,70(3):602-609. [41] WANG D,LIU Y,CHEN L,et al. Key role of 15-LO/15-HETE in angiogenesis and functional recovery in later stages of post-stroke mice[J/OL]. Sci Rep,2017,7:46698[2024-10-07]. https://doi.org/10.1038/srep46698. [42] CHEN L,TANG S,ZHANG F F,et al. CYP4A/20-HETE regulates ischemia-induced neovascularization via its actions on endothelial progenitor and preexisting endothelial cells[J/OL]. Am J Physiol Heart Circ Physiol,2019,316(6):H1468-H1479[2024-10-07]. https://doi.org/10.1152/ajpheart.00690.2018. [43] LIU Z G,LIU Y F,ZHOU H X,et al. Epoxyeicosatrienoic acid ameliorates cerebral ischemia-reperfusion injury by inhibiting inflammatory factors and pannexin-1[J]. Mol Med Rep,2017,16(2):2179-2184. [44] QU Y Y,YUAN M Y,LIU Y,et al. The protective effect of epoxyeicosatrienoic acids on cerebral ischemia/reperfusion injury is associated with PI3K/AKT pathway and ATP-sensitive potassium channels[J]. Neurochem Res,2015,40(1):1-14. [45] TANG J,CHEN Y,LI J Y,et al. 14,15-EET alleviates neurological impairment through maintaining mitochondrial dynamics equilibrium via AMPK/SIRT1/FoxO1 signal pathways in mice with cerebral ischemia reperfusion[J]. CNS Neurosci Ther,2023,29(9):2583-2596. [46] SILER D A,MARTINI R P,WARD J P,et al. Protective role of P450 epoxyeicosanoids in subarachnoid hemorrhage[J]. Neurocrit Care,2015,22(2):306-319. [47] DONNELLY M K,CONLEY Y P,CRAGO E A,et al. Genetic markers in the EET metabolic pathway are associated with outcomes in patients with aneurysmal subarachnoid hemorrhage[J]. J Cereb Blood Flow Metab,2015,35(2):267-276. [48] GARSCHA U,OLIW E H. Steric analysis of 8-hydroxy- and 10-hydroxyoctadecadienoic acids and dihydroxyoctadecadienoic acids formed from 8R-hydroperoxyoctadecadienoic acid by hydroperoxide isomerases[J]. Anal Biochem,2007,367(2):238-246. [49] DE MEYER G R,BULT H,HERMAN A G. Early atherosclerosis is accompanied by a decreased rather than an increased accumulation of fatty acid hydroxyderivatives[J]. Biochem Pharmacol,1991,42(2):279-283. [50] VANGAVETI V,BAUNE B T,KENNEDY R L. Hydroxyoctadecadienoic acids:novel regulators of macrophage differentiation and atherogenesis[J]. Ther Adv Endocrinol Metab,2010,1(2):51-60. [51] XIAN W J,LI T,LI L Y,et al. Maresin 1 attenuates the inflammatory response and mitochondrial damage in mice with cerebral ischemia/reperfusion in a SIRT1-dependent manner[J/OL]. Brain Res,2019,1711:83-90[2024-10-07]. https://doi.org/10.1016/j.brainres.2019.01.013. [52] WEI J H,SU W F,ZHAO Y Y,et al. Maresin 1 promotes nerve regeneration and alleviates neuropathic pain after nerve injury[J/OL]. J Neuroinflammation,2022,19(1):32[2024-10-07]. https://doi.org/10.1186/s12974-022-02405-1. [53] LI T,ZHENG J X,WANG Z T,et al. Maresin 1 improves cognitive decline and ameliorates inflammation and blood-brain barrier damage in rats with chronic cerebral hypoperfusion[J/OL]. Brain Res,2022,1788:147936[2024-10-07]. https://doi.org/10.1016/j.brainres.2022.147936. [54] LI Z Y,YUAN W,YANG X,et al. Maresin 1 activates LGR6 to alleviate neuroinflammation via the CREB/JMJD3/IRF4 pathway in a rat model of subarachnoid hemorrhage[J/OL]. Neuroscience,2024,542:21-32[2024-10-07]. https://doi.org/10.1016/j.neuroscience.2024.01.022. [55] ALBAYRAK S,AYDIN M A,UGUR K,et al. Subfatin,asprosin,alamandine and maresin-1 in cerebral ischemia,intracranial and subarachnoid hemorrhages[J]. Eur Rev Med Pharmacol Sci,2023,27(10):4471-4480. [56] ABDOLMALEKI F,KOVANEN P T,MARDANI R,et al. Resolvins:emerging players in autoimmune and inflammatory diseases[J]. Clin Rev Allergy Immunol,2020,58(1):82-91. [57] FREDMAN G,HELLMANN J,PROTO J D,et al. An imbalance between specialized pro-resolving lipid mediators and pro-inflammatory leukotrienes promotes instability of atherosclerotic plaques[J/OL]. Nat Commun,2016,7:12859[2024-10-07]. https://doi.org/10.1038/ncomms12859. [58] MENA H A,SPITE M. Proresolving receptor tames inflammation in atherosclerosis[J/OL]. J Clin Invest,2021,131(24):e155240[2024-10-07]. https://doi.org/10.1038/ncomms12859. [59] HASTURK H,ABDALLAH R,KANTARCI A,et al. Resolvin E1(RvE1)attenuates atherosclerotic plaque formation in diet and inflammation-induced atherogenesis[J]. Arterioscler,Thromb Vasc Biol,2015,35(5):1123-1133. [60] LI L,CHENG S Q,SUN Y Q,et al. Resolvin D1 reprograms energy metabolism to promote microglia to phagocytize neutrophils after ischemic stroke[J/OL]. Cell Rep,2023,42(6):112617[2024-10-07]. https://doi.org/10.1016/j.celrep.2023.112617. [61] DONG X Y,GAO J,ZHANG C Y,et al. Neutrophil membrane-derived nanovesicles alleviate inflammation to protect mouse brain injury from ischemic stroke[J]. ACS Nano,2019,13(2):1272-1283. [62] LI W,SHAN H,MA Y J,et al. Prognostic significance of serum resolvin D1 levels in patients with acute supratentorial intracerebral hemorrhage:a prospective longitudinal cohort study[J/OL]. Clin Chim Acta,2023,547:117446[2024-10-07]. https://doi.org/10.1016/j.cca.2023.117446. [63] YU D F,JIANG F F,XU W,et al. Declined serum resolvin D1 levels to predict severity and prognosis of human aneurysmal subarachnoid hemorrhage:a prospective cohort study[J/OL]. Neuropsychiatr Dis Treat,2023,19:1463-1476[2024-10-07]. https://doi.org/10.2147/NDT.S417630. [64] VIDAR HANSEN T,SERHAN C N. Protectins:their biosynthesis,metabolism and structure-functions[J/OL]. Biochem Pharmacol,2022,206:115330[2024-10-07]. https://doi.org/10.1016/j.bcp.2022.115330. [65] BAZAN N G,EADY T N,KHOUTOROVA L,et al. Novel aspirin-triggered neuroprotectin D1 attenuates cerebral ischemic injury after experimental stroke[J]. Exp Neurol,2012,236(1):122-130. [66] MERCHED A J,KO K,GOTLINGER K H,et al. Atherosclerosis:evidence for impairment of resolution of vascular inflammation governed by specific lipid mediators[J]. FASEB J,2008,22(10):3595-3606. [67] ZIRPOLI H,SOSUNOV S A,NIATSETSKAYA Z V,et al. NPD1 rapidly targets mitochondria-mediated apoptosis after acute injection protecting brain against ischemic injury[J/OL]. Exp Neurol,2021,335:113495[2024-10-07]. https://doi.org/10.1016/j.expneurol.2020.113495. [68] IWUCHUKWU I,NGUYEN D,SHIRAZIAN A,et al. Neuroprotectin D1,a lipid anti-inflammatory mediator,in patients with intracerebral hemorrhage[J/OL]. Biochimie,2022,195:16-18[2024-10-07]. https://doi.org/10.1016/j.biochi.2021.12.017. [69] ISHIDA N,YAMADA H,HIROSE M. Euphausia pacifica(North Pacific krill):review of chemical features and potential benefits of 8-HEPE against metabolic syndrome,dyslipidemia,NAFLD,and atherosclerosis[J/OL]. Nutrients,2021,13(11):3765[2024-10-07]. https://doi.org/10.3390/nu13113765. [70] NAGATAKE T,SHIBATA Y,MORIMOTO S,et al. 12-Hydroxyeicosapentaenoic acid inhibits foam cell formation and ameliorates high-fat diet-induced pathology of atherosclerosis in mice[J/OL]. Sci Rep,2021,11(1):10426[2024-10-07]. https://doi.org/10.1038/s41598-021-89707-1. [71] YUAN J J,CHEN Q,XIONG X Y,et al. Quantitative profiling of oxylipins in acute experimental intracerebral hemorrhage[J/OL]. Front Neurosci,2020,14:777[2024-10-07]. https://doi.org/10.3389/fnins.2020.00777. [72] VENØ S K,BORK C S,JAKOBSEN M U,et al. Marine n-3 polyunsaturated fatty acids and the risk of ischemic stroke[J]. Stroke,2019,50(2):274-282. [73] KIPPLER M,LARSSON S C,BERGLUND M,et al. Associations of dietary polychlorinated biphenyls and long-chain omega-3 fatty acids with stroke risk[J/OL]. Environ Int,2016,94:706-711[2024-10-07]. https://doi.org/10.1016/j.envint.2016.07.012. [74] TANAKA K,ISHIKAWA Y,YOKOYAMA M,et al. Reduction in the recurrence of stroke by eicosapentaenoic acid for hypercholesterolemic patients:subanalysis of the JELIS trial[J]. Stroke,2008,39(7):2052-2058. [75] JOHNSTON S C,EASTON J D,FARRANT M,et al. Clopidogrel and aspirin in acute ischemic stroke and high-risk TIA[J]. N Engl J Med,2018,379(3):215-225. [76] SHEN H C. Soluble epoxide hydrolase inhibitors:a patent review[J]. Expert Opin Ther Pat,2010,20(7):941-956. |
[1] | 梁艳超, 王晓岩, 单凯. 基于DMAIC模型的妊娠合并脑血管病急诊就诊流程优化研究 [J]. 中国卒中杂志, 2024, 19(8): 873-879. |
[2] | 中国卒中学会医疗质量管理与促进分会, 《中英文标准化动脉粥样硬化性脑血管病术语中国专家共识》编写组. 中英文标准化动脉粥样硬化性脑血管病术语中国专家共识 [J]. 中国卒中杂志, 2024, 19(8): 973-977. |
[3] | 吴春艳, 朱新颖, 于文轩, 高云彬, 季丽丽, 战同霞, 谢海. 立德树人视域下脑血管病情景模拟案例教学效果评价问卷编制及信效度检验 [J]. 中国卒中杂志, 2024, 19(8): 978-982. |
[4] | 李丽君, 张宁, 陈琦, 王春雪. 主观性失眠与脑血管病慢性期功能预后的关系研究:基于多中心前瞻性研究的事后分析 [J]. 中国卒中杂志, 2024, 19(7): 815-821. |
[5] | 张啟铿, 林丽, 谢臻彦, 李雪松. 外泌体减轻出血性脑血管病后继发性损伤的研究进展 [J]. 中国卒中杂志, 2024, 19(7): 840-847. |
[6] | 冯致远, 李子孝, 王春娟. 数字健康在脑血管病领域的应用及未来发展趋势[J]. 中国卒中杂志, 2024, 19(6): 607-612. |
[7] | 孟令涉, 王春娟. 人工智能与机器学习在心脑血管疾病管理中的应用与前景:美国心脏学会使用人工智能改善心脏疾病结局科学声明解读[J]. 中国卒中杂志, 2024, 19(6): 621-631. |
[8] | 温家琦, 庞江霞, 陈超, 姜长春, 郝喜娃. 牛磺酸在代谢性脑血管病中的潜在作用及其机制研究进展[J]. 中国卒中杂志, 2024, 19(6): 706-713. |
[9] | 金奥铭, 谷鸿秋. 临床预测模型的展现形式[J]. 中国卒中杂志, 2024, 19(5): 515-519. |
[10] | 李世雨, 张星, 胡文立. 脂蛋白(a)与颈动脉粥样硬化不稳定斑块的关系[J]. 中国卒中杂志, 2024, 19(5): 539-544. |
[11] | 许杰, 王拥军. 代谢性脑血管病的“多系统对话”与“多学科共管”[J]. 中国卒中杂志, 2024, 19(2): 125-129. |
[12] | 张方圆, 薛婧, 许杰, 王拥军. 干预代谢危险因素对脑血管病影响的研究进展[J]. 中国卒中杂志, 2024, 19(2): 131-137. |
[13] | 梁小雪, 郭黎. 肥胖相关慢性炎症与代谢性脑血管病[J]. 中国卒中杂志, 2024, 19(2): 138-144. |
[14] | 钟文华, 薛婧, 许杰. 代谢组学在代谢性脑血管病中的应用研究[J]. 中国卒中杂志, 2024, 19(2): 145-149. |
[15] | 杜鑫, 张家亮, 霍墨菲. 网络远程招生方式前后三年脑血管病方向统招硕士研究生生源情况分析[J]. 中国卒中杂志, 2024, 19(2): 235-239. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||