中国卒中杂志 ›› 2022, Vol. 17 ›› Issue (11): 1163-1170.DOI: 10.3969/j.issn.1673-5765.2022.11.002
伊珞, 周宏宇, 仇鑫, 李子孝, 王拥军
1 北京 100070 首都医科大学附属北京天坛医院神经病学中心
2 国家神经系统疾病临床医学研究中心
3 北京脑科学与类脑研究中心
4 国家神经系统疾病医疗质量控制中心
收稿日期:
2022-06-28
出版日期:
2022-11-20
发布日期:
2022-11-20
通讯作者:
王拥军 yongjunwang@ncrcnd.org.cn
基金资助:
国家自然科学基金项目(82171270;92046016)
北京市自然科学基金项目(Z200016)
中国医学科学院医学与健康科技创新工程项目(2019-I2M-5-029)
YI Luo, ZHOU Hongyu, QIU Xin, LI Zixiao, WANG Yongjun
Received:
2022-06-28
Online:
2022-11-20
Published:
2022-11-20
摘要: 动脉粥样硬化是缺血性卒中、冠心病等心脑血管疾病的主要病因。既往研究发现DNA甲基化在动脉粥样硬化斑块的发生、进展中具有重要调节作用,并在病变的不同阶段表现出细胞特异性改变。本文综述了动脉粥样硬化斑块中内皮细胞、平滑肌细胞、巨噬细胞以及动脉粥样硬化性疾病患者外周血免疫细胞中DNA甲基化模式改变相关研究,总结了动脉粥样硬化性卒中患者的DNA甲基化改变,以期为新靶点的发现和疾病诊治提供新的思路。
伊珞, 周宏宇, 仇鑫, 李子孝, 王拥军. 动脉粥样硬化性疾病的DNA甲基化改变[J]. 中国卒中杂志, 2022, 17(11): 1163-1170.
YI Luo, ZHOU Hongyu, QIU Xin, LI Zixiao, WANG Yongjun. DNA Methylation Changes in Atherosclerotic Diseases [J]. Chinese Journal of Stroke, 2022, 17(11): 1163-1170.
[1] RADER D J,DAUGHERTY A. Translating molecular discoveries into new therapies for atherosclerosis[J]. Nature,2008,451(7181):904-913. [2] TABAS I,GARCÍA-CARDEÑA G,OWENS G K. Recent insights into the cellular biology of atherosclerosis[J]. J Cell Biol,2015,209(1):13-22. [3] VERGALLO R,CREA F. Atherosclerotic plaque healing[J]. N Engl J Med,2020,383(9):846-857. [4] KHYZHA N,ALIZADA A,WILSON M D,et al. Epigenetics of atherosclerosis:emerging mechanisms and methods[J]. Trends Mol Med,2017,23(4):332-347. [5] RIZZACASA B,AMATI F,ROMEO F,et al. Epigenetic modification in coronary atherosclerosis:JACC review topic of the week[J]. J Am Coll Cardiol,2019,74(10):1352-1365. [6] KHAN A W,PANENI F,JANDELEIT-DAHM K A M. Cell-specific epigenetic changes in atherosclerosis[J]. Clin Sci(Lond),2021,135(9):1165-1187. [7] NAPOLI C,PAOLISSO G,CASAMASSIMI A,et al. Effects of nitric oxide on cell proliferation:novel insights[J]. J Am Coll Cardiol,2013,62(2):89-95. [8] THIJSSEN D H J,BRUNO R M,VAN MIL A C C M,et al. Expert consensus and evidence-based recommendations for the assessment of flow-mediated dilation in humans[J]. Eur Heart J,2019,40(30):2534-2547. [9] LIBBY P. The changing landscape of atherosclerosis[J]. Nature,2021,592(7855):524-533. [10] DUNN J,QIU H,KIM S,et al. Flow-dependent epigenetic DNA methylation regulates endothelial gene expression and atherosclerosis[J]. J Clin Invest,2014,124(7):3187-3199. [11] YANG Q,LI X H,LI R Q,et al. Low shear stress inhibited endothelial cell autophagy through TET2 downregulation[J]. Ann Biomed Eng,2016,44(7):2218-2227. [12] KU K H,DUBINSKY M K,SUKUMAR A N,et al. In vivo function of flow-responsive Cis-DNA elements of eNOS gene:a role for chromatin-based mechanisms[J]. Circulation,2021,144(5):365-381. [13] ZHANG Y P,HUANG Y T,HUANG T S,et al. The mammalian target of rapamycin and DNA methyltransferase 1 axis mediates vascular endothelial dysfunction in response to disturbed flow[J/OL]. Sci Rep,2017,7(1):14996[2022-06-16]. https://doi.org/10.1038/s41598-017-15387-5. [14] METHORST R,PASTERKAMP G,VAN DER LAAN S W. Exploring the causal inference of shear stress associated DNA methylation in carotid plaque on cardiovascular risk [J/OL]. Atherosclerosis,2021,325:30-37[2022-06-16]. https://doi.org/10.1016/j.atherosclerosis.2021.03.043. [15] JIANG Y Z,JIMÉNEZ J M,OU K,et al. Hemodynamic disturbed flow induces differential DNA methylation of endothelial kruppel-like factor 4 promoter in vitro and in vivo[J]. Circ Res,2014,115(1):32-43. [16] XIAO Y J,XIA J J,CHENG J Q,et al. Inhibition of S-adenosylhomocysteine hydrolase induces endothelial dysfunction via epigenetic regulation of p66shc-mediated oxidative stress pathway[J]. Circulation,2019,139(19):2260-2277. [17] LIU Y X,TIAN X X,LIU S,et al. DNA hypermethylation:a novel mechanism of CREG gene suppression and atherosclerogenic endothelial dysfunction[J/OL]. Redox Biol,2020,32:101444[2022-06-16]. https://doi.org/10.1016/j.redox.2020.101444. [18] BASATEMUR G L,JØRGENSEN H F,CLARKE M C H,et al. Vascular smooth muscle cells in atherosclerosis[J]. Nat Rev Cardiol,2019,16(12):727-744. [19] LIU R,JIN Y,TANG W H,et al. Ten-eleven translocation-2(TET2)is a master regulator of smooth muscle cell plasticity[J]. Circulation,2013,128(18):2047-2057. [20] SHANKMAN L S,GOMEZ D,CHEREPANOVA O A,et al. KLF4-dependent phenotypic modulation of smooth muscle cells has a key role in atherosclerotic plaque pathogenesis[J]. Nat Med,2015,21(6):628-637. [21] LACOLLEY P,REGNAULT V,SEGERS P,et al. Vascular smooth muscle cells and arterial stiffening:relevance in development,aging,and disease[J]. Physiol Rev,2017,97(4):1555-1617. [22] ZHUANG J H,LUAN P P,LI H L,et al. The yin-yang dynamics of DNA methylation is the key regulator for smooth muscle cell phenotype switch and vascular remodeling[J]. Arterioscler Thromb Vasc Biol,2017,37(1):84-97. [23] STRAND K A,LU S,MUTRYN M F,et al. High throughput screen identifies the DNMT1(DNA methyltransferase-1)inhibitor,5-azacytidine,as a potent inducer of PTEN(phosphatase and tensin homolog):central role for PTEN in 5-azacytidine protection against pathological vascular remodeling[J]. Arterioscler Thromb Vasc Biol,2020,40(8):1854-1869. [24] JEONG K,MURPHY J M,KIM J H,et al. FAK activation promotes SMC dedifferentiation via increased DNA methylation in contractile genes[J/OL]. Circ Res,2021,129(12):e215-e233[2022-06-16]. https://doi.org/10.1161/CIRCRESAHA.121.319066. [25] MOORE K J,SHEEDY F J,FISHER E A. Macrophages in atherosclerosis:a dynamic balance[J]. Nat Rev Immunol,2013,13(10):709-721. [26] KASIKARA C,DORAN A C,CAI B,et al. The role of non-resolving inflammation in atherosclerosis[J]. J Clin Invest,2018,128(7):2713-2723. [27] JIN F Y,LI J,GUO J F,et al. Targeting epigenetic modifiers to reprogramme macrophages in non-resolving inflammation-driven atherosclerosis[J/OL]. Eur Heart J Open,2021,1(2):oeab022[2022-06-16]. https://doi.org/10.1093/ehjopen/oeab022. [28] XIA Z Y,GU M L,JIA X D,et al. Integrated DNA methylation and gene expression analysis identifies SLAMF7 as a key regulator of atherosclerosis[J]. Aging(Albany NY),2018,10(6):1324-1337. [29] BARRETT T J. Macrophages in atherosclerosis regression[J]. Arterioscler Thromb Vasc Biol,2020,40(1):20-33. [30] YU J,QIU Y Z,YANG J,et al. DNMT1-PPARγ pathway in macrophages regulates chronic inflammation and atherosclerosis development in mice[J/OL]. Sci Rep,2016,6:30053[2022-06-16]. https://doi.org/10.1038/srep30053. [31] TANG R Z,ZHU J J,YANG F F,et al. DNA methyltransferase 1 and Krüppel-like factor 4 axis regulates macrophage inflammation and atherosclerosis[J/OL]. J Mol Cell Cardiol,2019,128:11-24[2022-06-16]. https://doi.org/10.1016/j.yjmcc.2019.01.009. [32] FUSTER J J,MACLAUCHLAN S,ZURIAGA M A,et al. Clonal hematopoiesis associated with TET2 deficiency accelerates atherosclerosis development in mice[J]. Science,2017,355(6327):842-847. [33] ZHANG Y N,GUO Z Z,WU T W,et al. SULT2B1b inhibits reverse cholesterol transport and promotes cholesterol accumulation and inflammation in lymphocytes from AMI patients with low LDL-C levels[J]. Clin Sci(Lond),2020,134(2):273-287. [34] LIU Y,REYNOLDS L M,DING J,et al. Blood monocyte transcriptome and epigenome analyses reveal loci associated with human atherosclerosis[J/OL]. Nat Commun,2017,8(1):393[2022-06-16]. https://doi.org/10.1038/s41467-017-00517-4. [35] XIANG Y,LIANG B,ZHANG X K,et al. Atheroprotective mechanism by which folic acid regulates monocyte subsets and function through DNA methylation[J/OL]. Clin Epigenetics,2022,14(1):32[2022-06-16]. https://doi.org/10.1186/s13148-022-01248-0. [36] DENG Q Y,HUANG W,PENG C Y,et al. Genomic 5-mC contents in peripheral blood leukocytes were independent protective factors for coronary artery disease with a specific profile in different leukocyte subtypes[J/OL]. Clin Epigenetics,2018,10:9[2022-06-16]. https://doi.org/10.1186/s13148-018-0443-x. [37] JIANG D,WANG Y,CHANG G L,et al. DNA hydroxymethylation combined with carotid plaques as a novel biomarker for coronary atherosclerosis[J]. Aging(Albany NY),2019,11(10):3170-3181. [38] JIANG D,SUN M,YOU L N,et al. DNA methylation and hydroxymethylation are associated with the degree of coronary atherosclerosis in elderly patients with coronary heart disease[J/OL]. Life Sci,2019,224:241-248[2022-06-16]. https://doi.org/10.1016/j.lfs.2019.03.021. [39] BAKSHI C,VIJAYVERGIYA R,DHAWAN V. Aberrant DNA methylation of M1-macrophage genes in coronary artery disease[J/OL]. Sci Rep,2019,9(1):1429[2022-06-16]. https://doi.org/10.1038/s41598-018-38040-1. [40] AMMOUS F,ZHAO W,LIN L,et al. Epigenetics of single-site and multi-site atherosclerosis in African Americans from the genetic epidemiology network of arteriopathy(GENOA)[J/OL]. Clin Epigenetics,2022,14(1):10[2022-06-16]. https://doi.org/10.1186/s13148-022-01229-3. [41] WU L P,PEI Y Q,ZHU Y H,et al. Association of N6-methyladenine DNA with plaque progression in atherosclerosis via myocardial infarction-associated transcripts[J/OL]. Cell Death Dis,2019,10(12):909[2022-06-16]. https://doi.org/ 10.1038/s41419-019-2152-6. [42] ZUO H P,GUO Y Y,CHE L,et al. Hypomethylation of interleukin-6 promoter is associated with the risk of coronary heart disease[J]. Arq Bras Cardiol,2016,107(2):131-136. [43] HE X W,ZHAO Y,SHI Y H,et al. DNA methylation analysis identifies differentially methylated sites associated with early-onset intracranial atherosclerotic stenosis[J]. J Atheroscler Thromb,2020,27(1):71-99. [44] CULLELL N,SORIANO-TÁRRAGA C,GALLEGO-FÁBREGA C,et al. DNA methylation and ischemic stroke risk:an epigenome-wide association study[J]. Thromb Haemost,2022,122(10):1767-1778. [45] NAVAS-ACIEN A,DOMINGO-RELLOSO A,SUBEDI P,et al. Blood DNA methylation and incident coronary heart disease:evidence from the strong heart study[J]. JAMA Cardiol,2021,6(11):1237-1246. [46] FERNÁNDEZ-SANLÉS A,SAYOLS-BAIXERAS S,CURCIO S,et al. DNA methylation and age-independent cardiovascular risk,an epigenome-wide approach:the REGICOR study(registre gironí del COR)[J]. Arterioscler Thromb Vasc Biol,2018,38(3):645-652. [47] CASTELLANI C A,LONGCHAMPS R J,SUMPTER J A,et al. Mitochondrial DNA copy number can influence mortality and cardiovascular disease via methylation of nuclear DNA CpGs[J/OL]. Genome Med,2020,12(1):84[2022-06-16]. https://doi.org/ 10.1186/s13073-020-00778-7. [48] PORTILLA-FERNÁNDEZ E,HWANG S J,WILSON R,et al. Meta-analysis of epigenome-wide association studies of carotid intima-media thickness[J]. Eur J Epidemiol,2021,36(11):1143-1155. [49] WEI L H,ZHAO S M,WANG G X,et al. SMAD7 methylation as a novel marker in atherosclerosis[J]. Biochem Biophys Res Commun,2018,496(2):700-705. [50] DEKKERS K F,VAN ITERSON M,SLIEKER R C,et al. Blood lipids influence DNA methylation in circulating cells[J/OL]. Genome Biol,2016,17(1):138[2022-06-16]. https://doi.org/10.1186/s13059-016-1000-6. [51] ADAMS H P JR,BENDIXEN B H,KAPPELLE L J,et al. Classification of subtype of acute ischemic stroke. Definitions for use in a multicenter clinical trial. TOAST. Trial of Org 10172 in acute stroke treatment[J]. Stroke,1993,24(1):35-41. [52] SORIANO-TÁRRAGA C,JIMÉNEZ-CONDE J,GIRALT-STEINHAUER E,et al. Global DNA methylation of ischemic stroke subtypes[J/OL]. PLoS One,2014,9(4):e96543[2022-06-16]. https://doi.org/10.1371/journal.pone.0096543. [53] SHEN Y P,PENG C,BAI Q K,et al. Epigenome-wide association study indicates hypomethylation of MTRNR2L8 in large-artery atherosclerosis stroke[J]. Stroke,2019,50(6):1330-1338. [54] KIM J Y,CHOI B G,JELINEK J,et al. Promoter methylation changes in ALOX12 and AIRE1:novel epigenetic markers for atherosclerosis[J/OL]. Clin Epigenetics,2020,12(1):66[2022-06-16]. https://doi.org/10.1186/s13148-020-00846-0. [55] BUSHUEVA O,BARYSHEVA E,MARKOV A,et al. DNA hypomethylation of the MPO gene in peripheral blood leukocytes is associated with cerebral stroke in the acute phase[J]. J Mol Neurosci,2021,71(9):1914-1932. [56] SORIANO-TÁRRAGA C,LAZCANO U,GIRALT-STEINHAUER E,et al. Identification of 20 novel loci associated with ischaemic stroke. Epigenome-wide association study[J]. Epigenetics,2020,15(9):988-997. [57] QIN X Y,LI J,WU T,et al. Overall and sex-specific associations between methylation of the ABCG1 and APOE genes and ischemic stroke or other atherosclerosis-related traits in a sibling study of Chinese population[J/OL]. Clin Epigenetics,2019,11(1):189[2022-06-16]. https://doi.org/10.1186/s13148-019-0784-0. [58] ZHANG H L,ZHAO X Y,WANG C J,et al. A preliminary study of the association between apolipoprotein E promoter methylation and atherosclerotic cerebral infarction[J]. J Stroke Cerebrovasc Dis,2019,28(4):1056-1061. [59] LI Z B,YU F,ZHOU X Q,et al. Promoter hypomethylation of microRNA223 gene is associated with atherosclerotic cerebral infarction[J/OL]. Atherosclerosis,2017,263:237-243[2022-06-16]. https://doi.org/10.1016/j.atherosclerosis.2017.06.924. [60] GALLEGO-FABREGA C,CULLELL N,SORIANO-TÁRRAGA C,et al. DNA methylation of MMPs and TIMPs in atherothrombosis process in carotid plaques and blood tissues[J]. Oncotarget,2020,11(10):905-912. [61] LI J J,ZHANG X P,YANG M X,et al. DNA methylome profiling reveals epigenetic regulation of lipoprotein-associated phospholipase A2 in human vulnerable atherosclerotic plaque[J/OL]. Clin Epigenetics,2021,13(1):161[2022-06-16]. https://doi.org/10.1186/s13148-021-01152-z. [62] GALLEGO-FABREGA C,CARRERA C,RENY J L,et al. PPM1A methylation is associated with vascular recurrence in aspirin-treated patients[J]. Stroke,2016,47(7):1926-1929. [63] GALLEGO-FABREGA C,CARRERA C,RENY J L,et al. TRAF3 epigenetic regulation is associated with vascular recurrence in patients with ischemic stroke[J]. Stroke,2016,47(5):1180-1186. [64] LI X G,ZHAO K,MA N,et al. Association of ABCB1 promoter methylation with aspirin exposure,platelet function,and clinical outcomes in Chinese intracranial artery stenosis patients[J]. Eur J Clin Pharmacol,2017,73(10):1261-1269. [65] LIBBY P,HANSSON G K. From focal lipid storage to systemic inflammation:JACC review topic of the week[J]. J Am Coll Cardiol,2019,74(12):1594-1607. |
[1] | 曹黎明, 任力杰. 急性缺血性卒中诊疗技术的进展与展望[J]. 中国卒中杂志, 2024, 19(9): 983-989. |
[2] | 符鹏程, 曹黎明, 朱佳倩, 赵桂玉, 徐格林. 大动脉粥样硬化性缺血性卒中再灌注治疗的研究进展[J]. 中国卒中杂志, 2024, 19(9): 1004-1011. |
[3] | 张丽苹, 曹黎明, 肖楠, 廖雨琦, 池枫, 余艳妮, 任力杰. 纳米材料在缺血性卒中诊疗中的研究进展及挑战[J]. 中国卒中杂志, 2024, 19(9): 1012-1017. |
[4] | 王晓蕊, 骆嵩, 邹良玉, 屈洪党, 崔雪, 赵玉洁. 嗜酸性粒细胞与单核细胞比值预测急性缺血性卒中患者静脉溶栓预后的价值研究 [J]. 中国卒中杂志, 2024, 19(9): 1025-1033. |
[5] | 王铄, 余苹, 张宁, 王春雪. 2013—2023年缺血性卒中与睡眠相关性研究的文献计量学分析 [J]. 中国卒中杂志, 2024, 19(9): 1040-1047. |
[6] | 周宏宇, 李子孝, 王拥军. 基于影像组学预测大脑年龄与缺血性卒中的研究进展[J]. 中国卒中杂志, 2024, 19(9): 1066-1076. |
[7] | 阿娜古丽·阿不拉尼压孜, 吴晓欣, 李骄星, 李竹浩, 盛文利. 急性缺血性卒中磁敏感血管征影响因素及临床应用的研究进展[J]. 中国卒中杂志, 2024, 19(9): 1077-1085. |
[8] | 杨金波, 张聪. 高分辨率血管壁成像在缺血性卒中患者中的应用进展[J]. 中国卒中杂志, 2024, 19(9): 1086-1093. |
[9] | 吴春艳, 尹雅诗, 王广志, 岳奎涛. 急性缺血性卒中不同时间窗影像学评价及应用进展[J]. 中国卒中杂志, 2024, 19(9): 1094-1101. |
[10] | 张梦若, 徐守臣, 隋翠翠, 李玉奎, 王雪莉. 下肢康复机器人联合头针治疗对老年缺血性卒中患者步行效率和协调功能影响调查 [J]. 中国卒中杂志, 2024, 19(8): 902-908. |
[11] | 吴娱倩, 张玉梅, 臧大维, 范小伟, 王安心, 张晓丽, 孟霞. 上肢动作研究测试量表评定亚急性期缺血性卒中患者偏瘫侧上肢及手功能的信效度和敏感性研究 [J]. 中国卒中杂志, 2024, 19(8): 915-923. |
[12] | 莫秋红, 丁晓波, 李靓, 张岩波, 李伟荣. 基于可解释性机器学习模型的轻型缺血性卒中复发预测研究[J]. 中国卒中杂志, 2024, 19(8): 924-930. |
[13] | 逯丹, 陈玮琪, 王雅平, 段婉莹, 郭蕾, 王玲, 刘丽萍, 徐安定, 王拥军, 中国卒中学会脑保护圆桌会学术委员会. 缺血性卒中脑细胞保护科学声明——来自中国卒中学会的科学声明 [J]. 中国卒中杂志, 2024, 19(8): 938-955. |
[14] | 李光硕, 赵性泉. 《中国急性缺血性卒中诊治指南2023》解读[J]. 中国卒中杂志, 2024, 19(8): 956-961. |
[15] | 白磊鹏, 罗杰, 周思捷, 黄健辉, 梁铭钦, 赵庆顺. 肺叶楔形切除术后并发急性缺血性卒中行介入取栓治疗2例并文献回顾 [J]. 中国卒中杂志, 2024, 19(8): 962-966. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||