中国卒中杂志 ›› 2023, Vol. 18 ›› Issue (04): 396-403.DOI: 10.3969/j.issn.1673-5765.2023.04.004
侯叶叶, 周宏宇, 李子孝
收稿日期:
2022-11-09
出版日期:
2023-04-20
发布日期:
2023-04-20
通讯作者:
李子孝 lizixiao2008@hotmail.com
基金资助:
Received:
2022-11-09
Online:
2023-04-20
Published:
2023-04-20
摘要: 高血压是缺血性卒中最常见的可调节危险因素之一,作为一种多病因、高度异质性的疾病,环境、遗传因素在高血压的发生、发展过程中发挥着重要作用。基因与环境之间的相互作用,也就是表观遗传修饰可能介导遗传因素、环境因素和缺血性卒中之间的关系,但具体机制仍不明确。表观遗传修饰包括DNA甲基化、组蛋白修饰、染色质重塑等,其中DNA甲基化是表观遗传的重要组成部分,也是研究相对成熟的机制。DNA甲基化可以调节基因的表达,同时也受环境因素的影响。本文介绍了DNA甲基化在高血压相关病理生理机制、危险因素及环境因素等方面的研究进展,探讨了与高血压相关的DNA甲基化影响卒中风险的潜在机制,提出DNA甲基化用于高血压诊断、治疗及预防缺血性卒中的新靶点和新思路。
侯叶叶, 周宏宇, 李子孝. DNA甲基化与高血压的相关性研究进展[J]. 中国卒中杂志, 2023, 18(04): 396-403.
HOU Yeye, ZHOU Hongyu, LI Zixiao.
[1] QI Y,ZHAO H Y,WANG Y L,et al. Replication of the top 10 most significant polymorphisms from a large blood pressure genome-wide association study of northeastern Han Chinese East Asians[J]. Hypertens Res,2014,37(2):134-138. [2] BARBOUR J,HUSHEN P,NEWMAN G C,et al. Impact of an emergency medicine pharmacist on door to needle alteplase time and patient outcomes in acute ischemic stroke[J/OL]. Am J Emerg Med,2022,51:358-362[2023-01-17]. https://doi.org/10.1016/j. ajem. 2021.11.015. [3] ZHANG L,LU Q J,CHANG C. Epigenetics in health and disease[J/OL]. Adv Exp Med Biol,2020,1253:3-55[2022-10-11]. https://doi.org/10.1007/978-981-15-3449-2_1. [4] TAKEDA Y,DEMURA M,YONEDA T,et al. DNA methylation of the angiotensinogen gene,AGT,and the aldosterone synthase gene,CYP11B2 in cardiovascular diseases[J/OL]. Int J Mol Sci,2021,27(9):4587[2022-10-11]. https://doi.org/10.3390/ijms22094587. [5] FERRANDI M,SALARDI S,TRIPODI G,et al. Evidence for an interaction between adducin and Na(+)-K(+)-ATPase:relation to genetic hypertension[J/OL]. Am J Physiol,1999,277(4):H1338-1349[2022-10-11]. https://doi.org/10.1152/ajpheart. 1999.277.4. h1338. [6] HAN L Y,LIU P P,WANG C Y,et al. The interactions between alcohol consumption and DNA methylation of the ADD1 gene promoter modulate essential hypertension susceptibility in a population-based,case-control study[J]. Hypertens Res,2015,38(4):284-290. [7] MIRABITO COLAFELLA K M,BOVÉE D M,DANSER A H J. The renin-angiotensin-aldosterone system and its therapeutic targets[J/OL]. Exp Eye Res,2019,186:107680[2022-11-10]. https://doi. org/10.1016/j.exer.2019.05.020. [8] MIYOSHI M,IMAKADO Y,OTANI L,et al. Maternal protein restriction induces renal AT2R promoter hypomethylation in salt-sensitive,hypertensive rats[J]. Food Sci Nutr,2021,9(3):1452-1459. [9] PEI F,WANG X Q,YUE R C,et al. Differential expression and DNA methylation of angiotensin type 1A receptors in vascular tissues during genetic hypertension development[J]. Mol Cell Biochem,2015,402(1/2):1-8. [10] HUNDEMER G L,VAIDYA A. Primary aldosteronism diagnosis and management:a clinical approach[J]. Endocrinol Metab Clin North Am,2019,48(4):681-700. [11] CHAUDHARY M. Novel methylation mark and essential hypertension[J/OL]. J Genet Eng Biotechnol,2022,20(1):11[2022-10-11]. https://doi.org/10.1186/s43141-022-00301-y. [12] ROSSIER B C,BOCHUD M,DEVUYST O. The hypertension pandemic:an evolutionary perspective[J]. Physiology(Bethesda),2017,32(2):112-125. [13] ZHONG Q L,LIU C Y,FAN R,et al. Association of SCNN1B promoter methylation with essential hypertension[J]. Mol Med Rep,2016,14(6):5422-5428. [14] CHO H M,LEE H A,KIM H Y,et al. Expression of Na+-K+ -2Cl- cotransporter 1 is epigenetically regulated during postnatal development of hypertension[J]. Am J Hypertens,2011,24(12):1286-1293. [15] LIU R J,JIN Y,TANG W H,et al. Ten-eleven translocation-2(TET2)is a master regulator of smooth muscle cell plasticity[J]. Circulation,2013,128(18):2047-2057. [16] JIN F,LI X,WANG Z G,et al. Association of mitofusin 2 methylation and essential hypertension:a case-control study in a Chinese population[J]. Hypertens Res,2018,41(8):605-613. [17] CHEN M,XIAO D L,HU X Q,et al. Hypoxia represses ER-α expression and inhibits estrogen-induced regulation of Ca2+-activated K+ channel activity and myogenic tone in ovine uterine arteries:causal role of DNA methylation[J]. Hypertension,2015,66(1):44-51. [18] EMDIN M,FATINI C,MIRIZZI G,et al. Biomarkers of activation of renin-angiotensin-aldosterone system in heart failure:how useful,how feasible?[J/OL]. Clin Chim Acta,2015,443:85-93[2022-10-11]. https://doi.org/10.1016/j.cca. 2014.10.031. [19] 吴金峰. 高血压交感神经相关发病机制[J]. 临床与病理杂志,2021,41(1):210-215. [20] ESLER M,EIKELIS N,SCHLAICH M,et al. Human sympathetic nerve biology:parallel influences of stress and epigenetics in essential hypertension and panic disorder[J/OL]. Ann N Y Acad Sci,2008,1148:338-348[2022-10-11]. https://doi.org/10.1196/annals.1410.064. [21] PUSHPAKUMAR S,REN L,JUIN S K,et al. Methylation-dependent antioxidant-redox imbalance regulates hypertensive kidney injury in aging[J/OL]. Redox Biol,2020,37:101754[2022-10-11]. https://doi.org/10.1016/j. redox.2020.101754. [22] MAO S Q,GU T L,ZHONG D F,et al. Hypomethylation of the Toll-like receptor-2 gene increases the risk of essential hypertension[J]. Mol Med Rep,2017,16(1):964-970. [23] OMAR W,ABDULLAH A,TALIB N A,et al. Leucocytic DNA methylation of interleukin-6 promoter reduction in pre-hypertensive young adults[J]. Malays J Med Sci,2019,26(6):46-54. [24] MAO S Q,SUN J H,GU T L,et al. Hypomethylation of interleukin-6(IL-6)gene increases the risk of essential hypertension:a matched case-control study[J]. J Hum Hypertens,2017,31(8):530-536. [25] BAO X J,MAO S Q,GU T L,et al. Hypomethylation of the interferon γ gene as a potential risk factor for essential hypertension:a case-control study[J]. Tohoku J Exp Med,2018,244(4):283-290. [26] WANG X L,FALKNER B,ZHU H D,et al. A genome-wide methylation study on essential hypertension in young African American males[J/OL]. PLoS One,2013,8(1):e53938[2022-10-11]. https://doi.org/10.1371/journal.pone.0053938. [27] KATO N,LOH M,TAKEUCHI F,et al. Trans-ancestry genome-wide association study identifies 12 genetic loci influencing blood pressure and implicates a role for DNA methylation[J]. Nat Genet,2015,47(11):1282-1293. [28] SMOLAREK I,WYSZKO E,BARCISZEWSKA A M,et al. Global DNA methylation changes in blood of patients with essential hypertension[J]. Med Sci Monit,2010,16(3):149-155. [29] GUO Y,PEI Y Q,LI K X,et al. DNA N(6)- methyladenine modification in hypertension[J]. Aging(Albany NY),2020,12(7):6276-6291. [30] LIU P Y,LIU Y,LIU H,et al. Role of DNA de novo(de)methylation in the kidney in salt-induced hypertension[J]. Hypertension,2018,72(5):1160-1171. [31] WANG J W,ZHANG L X,WANG F,et al. Prevalence,awareness,treatment,and control of hypertension in China:results from a national survey[J]. Am J Hypertens,2014,27(11):1355-1361. [32] FRAGA M F,BALLESTAR E,PAZ M F,et al. Epigenetic differences arise during the lifetime of monozygotic twins[J]. Proc Natl Acad Sci U S A,2005,102(30):10604-10609. [33] CHEN K,SUN Z J. Activation of DNA demethylases attenuates aging-associated arterial stiffening and hypertension[J/OL]. Aging cell,2018,17(4):e12762[2022-10-11]. https://doi.org/10.1111/acel.12762. [34] LIM S S,VOS T,FLAXMAN A D,et al. A comparative risk assessment of burden of disease and injury attributable to 67 risk factors and risk factor clusters in 21 regions,1990-2010:a systematic analysis for the global burden of disease study 2010[J]. Lancet,2012,380(9859):2224-2260. [35] TOBI E W,LUMEY L H,TALENS R P,et al. DNA methylation differences after exposure to prenatal famine are common and timing- and sex-specific[J]. Hum Mol Genet,2009,18(21):4046-4053. [36] KAWAKAMI-MORI F,NISHIMOTO M,REHEMAN L,et al. Aberrant DNA methylation of hypothalamic angiotensin receptor in prenatal programmed hypertension[J/OL]. JCI insight,2018,3(21):e95625[2022-10-11]. https://doi.org/10.1172/jci.insight.95625. [37] BOGDARINA I,WELHAM S,KING P J,et al. Epigenetic modification of the renin-angiotensin system in the fetal programming of hypertension[J]. Circ Res,2007,100(4):520-526. [38] RIVIÈRE G,LIENHARD D,ANDRIEU T,et al. Epigenetic regulation of somatic angiotensin-converting enzyme by DNA methylation and histone acetylation[J]. Epigenetics,2011,6(4):478-489. [39] GOYAL R,LONGO L D. Maternal protein deprivation:sexually dimorphic programming of hypertension in the mouse[J]. Hypertens Res,2013,36(1):29-35. [40] FRASER A,NELSON S M,MACDONALD-WALLIS C,et al. Hypertensive disorders of pregnancy and cardiometabolic health in adolescent offspring[J]. Hypertension,2013,62(3):614-620. [41] DICHGANS M,PULIT S L,ROSAND J. Stroke genetics:discovery,biology,and clinical applications[J]. Lancet Neurol,2019,18(6):587-599. [42] DING Q Q,LIU S W,YAO Y D,et al. Global,regional,and national burden of ischemic stroke,1990-2019[J/OL]. Neurology,2022,98(3):e279-e290[2023-01-03]. https://doi.org/10.1212/wnl. 0000000000013115. [43] FRISO S,PIZZOLO F,CHOI S W,et al. Epigenetic control of 11 beta-hydroxysteroid dehydrogenase 2 gene promoter is related to human hypertension[J]. Atherosclerosis,2008,199(2):323-327. [44] XU M,LI J L,CHEN X M,et al. MTHFD1 promoter hypermethylation increases the risk of hypertension[J]. Clin Exp Hypertens,2019,41(5):422-427. [45] WANG C Y,XU G D,WEN Q,et al. Significant association of methylenetetrahydrofolate dehydrogenase 1 promoter hypomethylation with stroke in a Chinese population with primary hypertension[J]. Ann Clin Lab Sci,2019,49(1):112-118. [46] WANG C Y,XU G D,WEN Q,et al. CBS promoter hypermethylation increases the risk of hypertension and stroke[J/OL]. Clinics(Sao Paulo),2019,74:e630[2022-10-11]. https://doi.org/10.6061/clinics/2019/e630. [47] HU J C,ZHU H,XU G D,et al. Significant association between DHFR promoter methylation and ischemic stroke in a Chinese hypertensive population[J/OL]. J Clin Lab Anal,2020,34(8):e23322[2022-10-11]. https://doi.org/10.1002/jcla. 23322. [48] ZHAO L,CHEN X S,ZHOU S J,et al. DNA methylation of AHCY may increase the risk of ischemic stroke[J]. Bosn J Basic Med Sci,2020,20(4):471-476. [49] SCHIFFRIN E L,DENG L Y,SVENTEK P,et al. Enhanced expression of endothelin-1 gene in resistance arteries in severe human essential hypertension[J]. J Hypertens,1997,15(1):57-63. [50] BLEZER E L,NICOLAY K,GOLDSCHMEDING R,et al. Early-onset but not late-onset endothelin-A-receptor blockade can modulate hypertension,cerebral edema,and proteinuria in stroke-prone hypertensive rats[J]. Hypertension,1999,33(1):137-144. [51] EASTWOOD S V,TILLIN T,CHATURVEDI N,et al. Ethnic differences in associations between blood pressure and stroke in South Asian and European men[J]. Hypertension,2015,66(3):481-488. [52] KAZMI N,ELLIOTT H R,BURROWS K,et al. Associations between high blood pressure and DNA methylation[J/OL]. PloS one,2020,15(1):e0227728[2022-10-11]. https://doi.org/10.1371/journal.pone. 0227728. |
[1] | 高德瑜, 王余, 王欣, 赵彤彤, 王素洁. 基于3D-ASL、DKI序列探讨脑小血管病脑白质高信号及其半暗带与认知障碍的相关性研究 [J]. 中国卒中杂志, 2024, 19(8): 931-937. |
[2] | 张方圆, 薛婧, 许杰, 王拥军. 干预代谢危险因素对脑血管病影响的研究进展[J]. 中国卒中杂志, 2024, 19(2): 131-137. |
[3] | 钱金平, 吴丹, 郭小玲. 脑心健康管理师核心胜任力评价指标体系的构建研究[J]. 中国卒中杂志, 2024, 19(2): 181-189. |
[4] | 吴晓莉, 刘丽旭. 睡眠障碍与卒中康复:神经重塑视角下治疗策略探索[J]. 中国卒中杂志, 2024, 19(10): 1197-1204. |
[5] | 车锋丽, 童燕娜, 韩臻臻, 段洪连, 耿晓坤, 赵性泉. “以器官系统为基础,以疾病为中心”多学科融合教学模式在五年制临床医学系本科生脑血管病教学中的应用[J]. 中国卒中杂志, 2024, 19(10): 1233-1238. |
[6] | 马瑛, 路正钊, 王拥军. 英国国家卒中临床指南2023版要点及解读——短暂性脑缺血发作及轻型缺血性卒中[J]. 中国卒中杂志, 2023, 18(12): 1352-1356. |
[7] | 李娜, 姬泽强, 文心瑜, 吴蕾, 赵性泉. BAT评分联合CTA点征对幕上自发性脑出血患者早期血肿扩大的预测价值研究[J]. 中国卒中杂志, 2023, 18(07): 780-786. |
[8] | 陈柳静, 朱凯淇, 蔡学礼. 应激性高血糖与前循环取栓再通后早期预后的相关性研究[J]. 中国卒中杂志, 2023, 18(04): 410-417. |
[9] | 霍洁, 刘京铭, 冀瑞俊, 徐玢, 郭伟. 重症卒中患者早期不同气道开放方式对肺部感染及气管插管的影响[J]. 中国卒中杂志, 2023, 18(03): 295-300. |
[10] | 刘阳, 程丝, 吕天节, 王誉博, 王孟, 许喆, 石延枫, 李子孝, 王拥军. 基于单细胞转录组的围产期卒中性别差异原因探究[J]. 中国卒中杂志, 2023, 18(02): 169-174. |
[11] | 赵曼曼, 程丝, 李嫣然, 李昊, 王拥军. 单细胞测序技术解析动脉粥样硬化巨噬细胞异质性的研究进展[J]. 中国卒中杂志, 2023, 18(02): 180-184. |
[12] | 宋晓微, 桑振华, 侯朵朵, 陈文文, 张红亮, 郑卓肇, 赵锡海, 李睿, 武剑. 血压昼夜节律变化与颅内动脉粥样硬化斑块特征的相关性研究[J]. 中国卒中杂志, 2023, 18(01): 61-67. |
[13] | 王孟, 王春娟, 李子孝, 谷鸿秋. 阶梯整群随机试验[J]. 中国卒中杂志, 2023, 18(01): 114-122. |
[14] | 林庆金, 杨雅玲, 卢武生. 寰椎变异致反复脑梗死1例报道[J]. 中国卒中杂志, 2022, 17(11): 1252-1256. |
[15] | 王一轻, 刘平国, 沈佳慧, 蔡增林. 脑穿支动脉病变梗死类型和神经影像学研究进展[J]. 中国卒中杂志, 2021, 16(09): 877-882. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||