WANG Yong-Jun,LI Zi-Xiao,DING Ling-Ling. Artificial Intelligence in Stroke Management: A New Dawn and Long Way to Go[J]. Chinese Journal of Stroke, 2020, 15(03): 223-227.
[1] GBD 2016 Stroke Collaborators. Global,regional,and national burden of stroke,1990-2016:asystematic analysis for the Global Burden of DiseaseStudy 2016[J]. Lancet Neurol,2019,18(5):439-458.[2] WANG W,JIANG B,SUN H,et al. Prevalence,incidence and mortality of stroke in China:resultsfrom a nationwide population-based survey of 480,687 adults[J]. Circulation,2017,135(8):759-771.[3] 张学高. 中国卫生健康统计年鉴2018[M]. 北京:中国协和医科大学出版社,2018:1-409.[4] LI Z,SINGHAL A B,WANG Y. Stroke physiciantraining in China[J/OL]. Stroke,2017,48(12):e338-e340[2020-01-10]. https://doi.org/10.1161/STROKEAHA.117.019462.[5] LI Z,WANG C,ZHAO X,et al. Substantialprogress yet significant opportunity for improvementin stroke care in China[J]. Stroke,2016,47(11):2843-2849.[6] WANG Y L,LI Z X,ZHAO X Q,et al. Effect ofa multifaceted quality improvement interventionon hospital personnel adherence to performancemeasures in patients with acute ischemic stroke inChina:a randomized clinical trial[J]. JAMA,2018,320(3):245-254.[7] WANG Y J,JING J,MENG X,et al. The ThirdChina National Stroke Registry(CNSR-Ⅲ)forpatients with acute ischaemic stroke or transientischaemic attack:design,rationale and baselinepatient characteristics[J]. Stroke Vasc Neurol,2019,4(3):158-164.[8] KUO F C,MAR B G,LINDSLEY R C,et al. Therelative utilities of genome-wide,gene panel,andindividual gene sequencing in clinical practice[J].Blood,2017,130(4):433-439.[9] SHAMEER K,BADGELEY M A,MIOTTO R,etal. Translational bioinformatics in the era of realtimebiomedical,health care and wellness datastreams[J]. Brief Bioinform,2017,18(1):105-124.[10] JAHAN R,SAVER J L,SCHWAMM L H,etal. Association between time to treatment withendovascular reperfusion therapy and outcomes inpatients with acute ischemic stroke treated in clinicalpractice[J]. JAMA,2019,322(3):252-263.[11] GOYAL M,MENON B K,van ZWAM W H,etal. Endovascular thrombectomy after large-vesselischaemic stroke:a meta-analysis of individualpatient data from five randomised trials[J]. Lancet,2016,387(10029):1723-1731.[12] TITANO J J,BADGELEY M,SCHEFFLEIN J,etal. Automated deep-neural-network surveillance ofcranial images for acute neurologic events[J]. NatMed,2018,24(9):1337-1341.[13] CHILAMKURTHY S,GHOSH R,TANAMALAS,et al. Deep learning algorithms for detection ofcritical findings in head CT scans:a retrospectivestudy[J]. Lancet,2018,392(10162):2388-2396.[14] CLAASSEN J,DOYLE K,MATORY A,etal. Detection of brain activation in unresponsivepatients with acute brain injury[J]. N Engl J Med,2019,380(26):2497-2505.[15] MURRAY N M,UNBERATH M,HAGER G D,etal. Artificial intelligence to diagnose ischemic strokeand identify large vessel occlusions:a systematicreview[J]. J Neurointerv Surg,2020,12(2):156-164.[16] IBM. IBM Watson[DB/OL]. [2020-01-10]. https://www.ibm.com/watson.[17] PIAZZA G,HURWITZ S,GALVIN C E,et al.Alert-based computerized decision support for highriskhospitalized patients with atrial fibrillationnot prescribed anticoagulation:a randomized,controlled trial(AF-ALERT)[J/OL]. Eur Heart J,2019[2020-01-10]. https://doi.org/10.1093/eurheartj/ehz385.[18] ABEDI V,GOYAL N,TSIVGOULIS G,et al.Novel screening tool for stroke using artificial neuralnetwork[J]. Stroke,2017,48(6):1678-1681.[19] WEIR C J,LEES K R,MACWALTER R S,et al.Cluster-randomized,controlled trial of computerbaseddecision support for selecting long-term antithrombotictherapy after acute ischaemic stroke[J].QJM,2003,96(2):143-153.[20] KARLSSON L O,NILSSON S,BÅNG M,etal. A clinical decision support tool for improvingadherence to guidelines on anticoagulant therapyin patients with atrial fibrillation at risk of stroke:acluster-randomized trial in a Swedish primary caresetting(the CDS-AF study)[J/OL]. PLoS Med,2018,15(3):e1002528[2020-01-10]. https://doi.org/10.1371/journal.pmed.1002528.[21] HAN L,ASKARI M,ALTMAN R B,et al.Atrial fibrillation burden signature and near-termprediction of stroke:a machine learning analysis[J/OL]. Circ Cardiovasc Qual Outcomes,2019,12(10):e005595[2020-01-10]. https://doi.org/10.1161/CIRCOUTCOMES.118.005595.[22] SHARMA A M,GUPTA A,KUMAR P K,et al. Areview on carotid ultrasound atherosclerotic tissuecharacterization and stroke risk stratification inmachine learning framework[J]. Curr Atheroscler Rep,2015,17(9):55.[23] HEO J,YOON J G,PARK H,et al. Machinelearning-based model for prediction of outcomes inacute stroke[J]. Stroke,2019,50(5):1263-1265.[24] GARG R,OH E,NAIDECH A,et al. Automatingischemic stroke subtype classification using machinelearning and natural language processing[J]. J StrokeCerebrovasc Dis,2019,28(7):2045-2051.[25] AL'AREF S J,MALIAKAL G,SINGH G,etal. Machine learning of clinical variables andcoronary artery calcium scoring for the predictionof obstructive coronary artery disease on coronarycomputed tomography angiography:analysis fromthe CONFIRM registry[J]. Eur Heart J,2020,41(3):359-367.[26] LEE H,YUNE S,MANSOURI M,et al. Anexplainable deep-learning algorithm for the detectionof acute intracranial haemorrhage from smalldatasets[J]. Nat Biomed Eng,2019,3(3):173-182.