WANG Meng, QIN Lu, WANG Chun-Juan, LI Jiao, WANG Yi-Long, ZHAO Xing-Quan, WANG Yong-Jun, LI Zi-Xiao. Machine Learning-based Models for Prediction of Intracerebral Hemorrhage Associated Pneumonia[J]. Chinese Journal of Stroke, 2020, 15(03): 243-249.
[1] NAGHAVI M,ABAJOBIR A A,ABBAFATI C,etal. Global,regional,and national age-sex specificmortality for 264 causes of death,1980-2016:a塞性肺疾病、mRS评分、NIHSS评分、GCS评分、吞咽困难等11个指标,结果表明,该模型AUC为0.76,预测效果较好。然而,该模型未纳入实验室检查的指标,已有研究证明超敏反应蛋白、白细胞计数等指标与SAP严重程度正相关[2 6 -27];同时,该模型纳入指标过多,在临床使用时,增加临床医生工作负担。本研究纳入实验室检查指标,使用白细胞计数作为预测因子,结果显示,白细胞计数对于SAP发生的影响(OR 1.11,95%CI 1.07~1.16)高于年龄(OR 1.03,95%CI 1.02~1.04)和NIHSS评分(OR 1.02,95%CI 1.0 0~1.0 4);同时本研究只纳入4个预测因子,L o g i s t i c回归(AUC=0.776)和LightGBM(AUC=0.767)两个模型的预测效果均高于上述研究的预测效果,预测结果更准确。本研究的优势有以下三点:首先,脑出血相关肺炎预测模型较少,本研究尝试在脑出血患者中,使用机器学习的方法预测SAP发生风险,研究方法可供后续研究使用;其次,白细胞计数在临床上容易获得,并且与SAP发生关联较高,因此模型只纳入4个预测因子,取得较好的预测效果,方便临床医生的实际应用;最后本研究将人群随机分为两部分,对建立的模型进行了内部验证,保证了模型结果的可靠性。同时,本研究也有不足之处,模型未进行外部验证,仍需在大样本、多中心的外部人群中进行验证,以保证模型的准确性与可靠性。综上,基于机器学习方法建立的脑出血相关肺炎风险预测模型有较高的诊断价值,年龄、NIHSS评分、白细胞计数和吞咽功能障碍为候选预测因子,可将模型纳入脑出血相关肺炎诊断决策。本研究结果的临床应用价值有待于更大样本的外部队列进行验证。systematic analysis for the Global Burden of DiseaseStudy 2016[J]. The Lancet,2017,390(10100):1151-1210.[2] ZHOU M,WANG H,ZENG X,et al. Mortality,morbidity,and risk factors in China and itsprovinces,1990-2017:a systematic analysis for theGlobal Burden of Disease Study 2017[J]. The Lancet,2019,394(10204):1145-1158.[3] VOS T,ABAJOBIR A A,ABATE K H,et al.Global,regional,and national incidence,prevalence,and years lived with disability for 328 diseases andinjuries for 195 countries,1990-2016:a systematicanalysis for the Global Burden of Disease Study2016[J]. The Lancet,2017,390(10100):1211-1259.[4] WESTENDORP W F,NEDERKOORN PJ,VERMEIJ J D,et al. Post-stroke infection:asystematic review and meta-analysis[J]. BMC Neurol,2011,11:110.[5] KWAN J,HAND P. Infection after acute stroke isassociated with poor short-term outcome[J]. ActaNeurol Scand,2007,115(5):331-338.[6] 杨兰,张霞,杨霞,等. 急性脑出血患者卒中相关性肺炎发病的危险因素分析[J]. 中国实用神经疾病杂志,2016,19(14):97-98.[7] INGEMAN A,ANDERSEN G,HUNDBORG HH,et al. In-hospital medical complications,lengthof stay,and mortality among stroke unit patients[J].Stroke,2011,42(11):3214-3218.[8] KATZAN I L,DAWSON N V,THOMAS C L,etal. The cost of pneumonia after acute stroke[J].Neurology,2007,68(22):1938-1943.[9] KAMMERSGAARD L P,JØRGENSEN H S,REITH J,et al. Early infection and prognosis afteracute stroke:The Copenhagen Stroke Study[J]. JStroke Cerebrovasc Dis,2001,10(5):217-221.[10] ASLANYAN S,WEIR C J,DIENER H C,et al.Pneumonia and urinary tract infection after acuteischaemic stroke:a tertiary analysis of the GAINinternational trial[J]. Eur J Neurol,2004,11(1):49-53.[11] KWON H M,JEONG S W,LEE S H,et al. Thepneumonia score:a simple grading scale forprediction of pneumonia after acute stroke[J]. Am JInfect Control,2006,34(2):64-68.[12] JI R,SHEN H,PAN Y,et al. Novel risk score topredict pneumonia after acute ischemic stroke[J].Stroke,2013,44(5):1303-1309.[13] JI R,SHEN H,PAN Y,et al. Risk score to predicthospital-acquired pneumonia after spontaneousintracerebral hemorrhage[J]. Stroke,2014,45(9):2620-2628.
[14] 曹文哲,应俊,张亚慧,等. 基于机器学习算法的前列腺癌诊断模型研究[J]. 中国医疗设备,2016,31(4):30-35.[15] 苗丰顺,李岩,高岑,等. 基于CatBoost算法的糖尿病预测方法[J]. 计算机系统应用,2019,28(9):215-218.[16] Stroke--1989. Recommendations on strokeprevention,diagnosis,and therapy. Reportof the WHO Task Force on Stroke and otherCerebrovascular Disorders[J]. Stroke,1989,20(10):1407-1431.[17] Garner J S,Jarvis W R,Emori T G,et al. CDCdefinitions for nosocomial infections,1988[J]. Am JInfect Control,1988,16(3):128-140.[18] CHEN T,GUESTRIN C.XGBoost:a scalable treeboosting system[C/OL]//ACM SIGKDD internationalconference on knowledge discovery and data mining.ACM,2016:785-794[2020-01-10]. https://doi.org/10.1145/2939672.2939785.[19] 曹文哲,应俊,张亚慧,等. 基于机器学习算法的前列腺癌诊断模型研究[J]. 中国医疗设备,2016,31(4):30-35.[20] HEO J,YOON J G,PARK H,et al. Machinelearning-based model for prediction of outcomes inacute stroke[J]. Stroke,2019,50(5):1263-1265.[21] NTAIOS G,FAOUZI M,FERRARI J,et al. Aninteger-based score to predict functional outcomein acute ischemic stroke:the ASTRAL score[J].Neurology,2012,78(24):1916-1922.[22] KUMAR S,MARCHINA S,MASSARO J,et al.ACDD4 score:a simple tool for assessing risk ofpneumonia after stroke[J]. J Neurol Sci,2017,372:399-402.[23] SMITH C J,BRAY B D,HOFFMAN A,et al.Can a novel clinical risk score improve pneumoniaprediction in acute stroke care? A UK multicentercohort study[J/OL]. J Am Heart Assoc,2015,4(1):e001307[2020-01-10]. https://doi.org/10.1161/JAHA.114.001307.[24] HARMS H,GRITTNER U,DRÖGE H,et al.Predicting post-stroke pneumonia:the PANTHERISscore[J]. Acta Neurol Scand,2013,128(3):178-184.[25] HOFFMANN S,MALZAHN U,HARMS H,et al.Development of a clinical score(A2DS2)to predictpneumonia in acute ischemic stroke[J]. Stroke,2012,43(10):2617-2623.[26] ZHANG H,LI X. Correlation between inflammatoryfactors and post-stroke pneumonia in diabeticpatients[J]. Exp Ther Med,2013,6(1):105-108.[27] YANG N Z,LI X,YUN X H,et al. Risk factorsanalysis of nosocomial pneumonia in elderly patientswith acute cerebral infraction[J/OL]. Medicine,2019,98(13):e15045[2020-01-10]. https://doi.org/10.1097/MD.0000000000015045.