LI Zi-Xiao, LIU Tao, DING Ling-Ling, LIU Zi-Yang, LI Xin-Xin, WANG Yong-Jun. Machine Learning in Stroke Care[J]. Chinese Journal of Stroke, 2020, 15(03): 283-289.
[1] WU S,WU B,LIU M,et al. Stroke in China:advances and challenges in epidemiology,prevention,and management[J]. Lancet Neurol,2019,18(4):394-405.[2] ZHOU M,WANG H,ZENG X,et al. Mortality,morbidity,and risk factors in China and its provinces,1990-2017:a systematic analysis for the GlobalBurden of Disease Study 2017[J]. Lancet,2019,394(10204):1145-1158.[3] POWERS W J,RABINSTEIN A A,ACKERSONT,et al. Guidelines for the early management ofpatients with acute ischemic stroke:2019 updateto the 2018 guidelines for the early management ofacute ischemic stroke:a guideline for healthcareprofessionals from the American Heart Association/American Stroke Association[J/OL]. Stroke,2019,50(12):e344-e418[2020-01-10]. https://doi.org/10.1161/STR.0000000000000211.[4] LI Z,SINGHAL A B,WANG Y. Stroke physiciantraining in China[J/OL]. Stroke,2017,48(12):e338-e340[2020-01-10]. https://doi.org/10.1161/STROKEAHA.117.019462.[5] 乔红艳,郭邦俊,张龙江. 机器学习在心血管影像中的研究进展[J]. 中华医学杂志,2019,99(17):1353-1357.[6] 卢光明,许强,张志强. 神经系统疾病人工智能医学影像现状与发展[J]. 中华放射学杂志,2018,52(10):734-737.[7] SONG T. Generative model-based ischemic strokelesion segmentation[DB/OL]. Electrical Engineeringand Systems Science,2019[2020-01-10]. https://arxiv.org/abs/1906.02392.[8] WU O,WINZECK S,GIESE A-K,et al. Big dataapproaches to phenotyping acute ischemic strokeusing automated lesion segmentation of multi-centermagnetic resonance imaging data[J]. Stroke,2019,50(7):1734-1741.[9] WOO I,LEE A,JUNG S C,et al. Fully automaticsegmentation of acute ischemic lesions ondiffusion-weighted imaging using convolutionalneural networks:comparison with conventionalalgorithms[J]. Korean J Radiol,2019,20(8):1275-1284.[10] KIM Y C,LEE J E,YU I,et al. Evaluation ofdiffusion lesion volume measurements in acuteischemic stroke using encoder-decoder convolutionalnetwork[J]. Stroke,2019,50(6):1444-1451.
[11] WINZECK S,MOCKING S J T,BEZERRA R,et al. Ensemble of convolutional neural networksimproves automated segmentation of acute ischemiclesions using multiparametric diffusion-weightedMRI[J]. AJNR Am J Neuroradiol,2019,40(6):938-945.[12] BOLDSEN J K,ENGEDAL T S,PEDRAZA S,etal. Better diffusion segmentation in acute ischemicstroke through automatic tree learning anomalysegmentation[J]. Front Neuroinform,2018,12:21.[13] ZHANG R,ZHAO L,LOU W,et al. Automaticsegmentation of acute ischemic stroke from DWIusing 3-D fully convolutional DenseNets[J]. IEEETrans Med Imaging,2018,37(9):2149-2160.[14] CHEN L,BENTLEY P,RUECKERT D. Fullyautomatic acute ischemic lesion segmentationin DWI using convolutional neural networks[J].Neuroimage Clin,2017,15:633-643.[15] LIEW S L,ANGLIN J M,BANKS N W,et al. Alarge,open source dataset of stroke anatomical brainimages and manual lesion segmentations[J]. Sci Data,2018,5:180011.[16] QI K,YANG H,LI C,et al. X-net:Brain strokelesion segmentation based on depthwise separableconvolution and long-range dependencies.International Conference on Medical ImageComputing and Computer-Assisted Intervention(MICCAI)2019[C/OL]. Springer,2019:247-255[2020-01-10]. https://doi.org/ 10.1007/978-3-030-32248-9_28.[17] ZHOU Y J,HUANG W J,DONG P,et al. D-UNet:a dimension-fusion U shape network for chronicstroke lesion segmentation[DB/OL]. ElectricalEngineering and Systems Science,2019[2020-01-10].https://arxiv.org/abs/1908.05104.[18] YANG H,HUANG W,QI K,et al. CLCINet:Cross-Level Fusion and context inferencenetworks for lesion segmentation of chronicstroke. International conference on Medical ImageComputing and Computer-Assisted Intervention(MICCAI)2019[DB/OL]. Springer,2019:266-274[2020-01-10]. https://arxiv.org/abs/1907.07008.[19] XUE Y,XIE M,FARHAT F G,et al. A fully3D multi-path convolutional neural network withfeature fusion and feature weighting for automaticlesion identification in brain MRI images[DB/OL]. Electrical Engineering and Systems Science,2019[2020-01-10]. https://arxiv.org/abs/1907.07807.[20] DHAR R,FALCONE G J,CHEN Y,et al. Deeplearning for automated measurement of hemorrhageand perihematomal edema in supratentorialintracerebral hemorrhage[J]. Stroke,2020,51(2):648-651.[21] DEBETTE S,MARKUS H S. The clinicalimportance of white matter hyperintensities on brainmagnetic resonance imaging:systematic review andmeta-analysis[J/OL]. BMJ,2010,341:c3666[2020-01-10]. https://doi.org/10.1136/bmj.c3666.[22] LAWRENCE A J,ZEESTRATEN E A,BENJAMINP,et al. Longitudinal decline in structuralnetworks predicts dementia in cerebral smallvessel disease[J/OL]. Neurology,2018,90(21):e1898-e1910[2020-01-10]. https://doi.org/10.1212/WNL.0000000000005551.[23] JIANG J,LIU T,ZHU W,et al. UBO Detector - Acluster-based,fully automated pipeline for extractingwhite matter hyperintensities[J]. Neuroimage,2018,174:539-549.[24] LI H,JIANG G,ZHANG J,et al. Fullyconvolutional network ensembles for white matterhyperintensities segmentation in MR images[J].Neuroimage,2018,183:650-665.[25] RONNEBERGER O,FISCHER P,BROX T. U-net:Convolutional networks for biomedical imagesegmentation[C/OL]//International Conference onMedical Image Computing and Computer-assistedIntervention(MICCAI)2015. Springer,2015:234-241[2020-01-10]. https://doi.org/10.1007/978-3-319-24574-4_28.[26] WANG Y,CATINDIG J A,HILAL S,et al. Multistagesegmentation of white matter hyperintensity,cortical and lacunar infarcts[J]. Neuroimage,2012,60(4):2379-2388.[27] HALLER S,VERNOOIJ M W,KUIJER J P A,etal. Cerebral microbleeds:imaging and clinicalsignificance[J]. Radiology,2018,287(1):11-28.[28] ZHANG Y D,ZHANG Y,HOU X X,et al.Seven-layer deep neural network based on sparseautoencoder for voxelwise detection of cerebralmicrobleed[J]. Multimed Tools Appl,2018,77(9):10521-10538.[29] BRIDLE J S. Probabilistic interpretation offeedforward classification network outputs,withrelationships to statistical pattern recognition[J].Neurocomputing,1990,68:227-236.[30] QI DOU,HAO CHEN,LEQUAN YU,et al.Automatic detection of cerebral microbleeds fromMR Images via 3D convolutional neural networks[J].IEEE Trans Med Imaging,2016,35(5):1182-1195.[31] ZHU Y C,TZOURIO C,SOUMARE A,etal. Severity of dilated Virchow-Robin spaces isassociated with age,blood pressure,and MRI markers of small vessel disease:a population-basedstudy[J]. Stroke,2010,41(11):2483-2490.[32] GONZALEZ-CASTRO V,VALDES HERNANDEZM D C,CHAPPELL F M,et al. Reliability of anautomatic classifier for brain enlarged perivascularspaces burden and comparison with humanperformance[J]. Clin Sci(Lond),2017,131(13):1465-1481.[33] DUBOST F,YILMAZ P,ADAMS H,et al. Enlargedperivascular spaces in brain MRI:automatedquantification in four regions[J]. Neuroimage,2019,185:534-544.[34] CHILAMKURTHY S,GHOSH R,TANAMALAS,et al. Deep learning algorithms for detection ofcritical findings in head CT scans:a retrospectivestudy[J]. Lancet,2018,392(10162):2388-2396.[35] TITANO J J,BADGELEY M,SCHEFFLEIN J,etal. Automated deep-neural-network surveillance ofcranial images for acute neurologic events[J]. NatMed,2018,24(9):1337-1341.[36] LEE H,YUNE S,MANSOURI M,et al. Anexplainable deep-learning algorithm for the detectionof acute intracranial haemorrhage from smalldatasets[J]. Nat Biomed Eng,2019,3(3):173-182.[37] LIU J,XU H,CHEN Q,et al. Prediction ofhematoma expansion in spontaneous intracerebralhemorrhage using support vector machine[J].EBioMedicine,2019,43:454-459.[38] WANG H L,HSU W Y,LEE M H,et al. Automaticmachine-learning-based outcome prediction inpatients with primary intracerebral hemorrhage[J].Front Neurol,2019,10:910.[39] HEO J,YOON J G,PARK H,et al. Machinelearning-based model for prediction of outcomes inacute stroke[J]. Stroke,2019,50(5):1263-1265.[40] REHME A K,VOLZ L J,FEIS D L,et al.Identifying neuroimaging markers of motor disabilityin acute stroke by machine learning techniques[J].Cereb Cortex,2015,25(9):3046-3056.[41] SIEGEL J S,RAMSEY L E,SNYDER A Z,etal. Disruptions of network connectivity predictimpairment in multiple behavioral domains afterstroke[J/OL]. Proc Natl Acad Sci USA,2016,113(30):e4367-e4376[2020-01-10]. https://doi.org/10.1073/pnas.1521083113.[42] THOMALLA G,CHENG B,EBINGER M,etal. DWI-FLAIR mismatch for the identification ofpatients with acute ischaemic stroke within 4. 5 hof symptom onset(PRE-FLAIR):a multicentreobservational study[J]. Lancet Neurol,2011,10(11):978-986.[43] LEE H,LEE E-J,HAM S,et al. Machine Learningapproach to identify stroke within 4.5 hours[J/OL].Stroke,2020[2020-01-10]. https://doi.org/10.1161/STROKEAHA.119.027611.[44] CHUNG J W,KIM Y C,CHA J,et al.Characterization of clot composition in acute cerebralinfarct using machine learning techniques[J]. AnnClin Transl Neurol,2019,6(4):739-747.[45] BENTLEY P,GANESALINGAM J,CARLTONJONES A L,et al. Prediction of stroke thrombolysisoutcome using CT brain machine learning[J].Neuroimage Clin,2014,4:635-640.[46] QIU W,KUANG H,NAIR J,et al. Radiomicsbasedintracranial thrombus features on CT and CTApredict recanalization with intravenous alteplase inpatients with acute ischemic stroke[J]. AJNR Am JNeuroradiol,2019,40(1):39-44.[47] BACCHI S,ZERNER T,OAKDEN-RAYNER L,et al. Deep learning in the prediction of ischaemicstroke thrombolysis functional outcomes:apilot study[J/OL]. Acad Radiol,2020,27(2):e19-e23[2020-01-10]. https://doi.org/10.1016/j.acra.2019.03.015.[48] RODRIGUES G M,BARREIRA C,FROEHLERM,et al. Multicenter ALADIN:Automated LargeArtery Occlusion Detection in Stroke ImagingUsing Artificial Intelligence[J/OL]. Stroke,2019,50(Suppl_1):AWP71[2020-01-10]. https://www.ahajournals.org/doi/10.1161/str.50.suppl_1.WP71.[49] AMUKOTUWA S A,STRAKA M,SMITH H,etal. Automated detection of intracranial large vesselocclusions on computed tomography angiography:asingle center experience[J]. Stroke,2019,50(10):2790-2798.[50] ALBERS G W,WALD M J,MLYNASH M,et al.Automated calculation of Alberta Stroke Programearly CT score:validation in patients with largehemispheric infarct[J]. Stroke,2019,50(11):3277-3279.