Chinese Journal of Stroke ›› 2020, Vol. 15 ›› Issue (08): 910-915.DOI: 10.3969/j.issn.1673-5765.2020.08.018
Previous Articles Next Articles
Received:
2020-02-06
Online:
2020-08-20
Published:
2020-08-20
崔柳平,马迪,陈盈,邢英琦
通讯作者:
邢英琦 xingyq@sina.com
CUI Liu-Ping,MA Di, CHEN Ying, XING Ying-Qi. Advances in Treatment of Atherosclerosis Targeting Lipid Metabolism and Oxidative Stress[J]. Chinese Journal of Stroke, 2020, 15(08): 910-915.
崔柳平,马迪,陈盈,邢英琦. 以脂质代谢和氧化应激为靶点的动脉粥样硬化治疗研究进展[J]. 中国卒中杂志, 2020, 15(08): 910-915.
[1] ROSS R. Atherosclerosis-an inflammatory disease[J]. N Engl J Med,1999,340(2):115-126.[2] BELTOWSKI J,WOJCICKA G,JAMROZWISNIEWSKAA,et al. Adverse effects of statinsmechanisms and consequences[J]. Current Drug Saf,2009,4(3):209-228.[3] ODDEN M C,PLETCHER M J,COXSON P G,etal. Cost-effectiveness and population impact ofstatins for primary prevention in adults aged 75years or older in the United States[J]. Ann InternMed,2015,162(8):533-541.[4] SCHIATTARELLA G G,PERRINO C,MAGLIULO F,et al. Statins and the elderly:recentevidence and current indications[J]. Aging Clin ExpRes,2012,24(3 Suppl):47-55.[5] XU R X,WU Y J. Lipid-modifying drugs:pharmacology and perspectives[J/OL]. Adv Exp MedBiol,2020,1177:133-148[2020-01-15]. https://doi.org/10.1007/978-981-15-2517-9_5.[6] INVESTIGATORS A H,BODEN W E,PROBSTFIELD J L,et al. Niacin in patients withlow HDL cholesterol levels receiving intensive statintherapy[J]. N Engl J Med,2011,365(24):2255-2267.[7] LAVIGNE P M,KARAS R H. The current stateof niacin in cardiovascular disease prevention:asystematic review and meta-regression[J]. J Am CollCardiol,2013,61(4):440-446.[8] KAZI D S,MORAN A E,COXSON P G,etal. Cost-effectiveness of PCSK9 inhibitortherapy in patients with heterozygous familialhypercholesterolemia or atheroscleroticcardiovascular disease[J]. JAMA,2016,316(7):743-753.[9] GUSTAFSEN C,OLSEN D,VILSTRUP J,et al.Heparan sulfate proteoglycans present PCSK9 to theLDL receptor[J]. Nat Commun,2017,8(1):503.[10] PETERSEN D N,HAWKINS J,RUANGSIRILUKW,et al. A small-molecule anti-secretagogue ofPCSK9 targets the 80S ribosome to inhibit PCSK9protein translation[J]. Cell Chem Biol,2016,23(11):1362-1371.[11] LONDREGAN A T,WEI L Q,XIAO J,et al. Smallmolecule proprotein convertase subtilisin/kexintype 9(PCSK9)inhibitors:hit to lead optimizationof systemic agents[J]. J Med Chem,2018,61(13):5704-5718.[12] RAYNER K J,SHEEDY F J,ESAU C C,etal. Antagonism of miR-33 in mice promotesreverse cholesterol transport and regression of atherosclerosis[J]. J Clin Invest,2011,121(7):2921-2931.[13] DE AGUIAR VALLIM T Q,TARLING E,KIM T,et al. MicroRNA-144 regulates hepatic ATP bindingcassette transporter A1 and plasma high-densitylipoprotein after activation of the nuclear receptorfarnesoid X receptor[J]. Circ Res,2013,112(12):1602-1612.[14] GOEDEKE L,ROTLLAN N,CANFRÁN-DUQUEA,et al. MicroRNA-148a regulates LDL receptor andABCA1 expression to control circulating lipoproteinlevels[J]. Nat Med,2015,21(11):1280-1288.[15] MEILER S,BAUMER Y,TOULMIN,et al.MicroRNA 302a is a novel modulator of cholesterolhomeostasis and atherosclerosis[J]. ArteriosclerThromb Vasc Biol,2015,35(2):323-331.[16] VICKERS K C,LANDSTREET S R,LEVIN MG,et al. MicroRNA-223 coordinates cholesterolhomeostasis[J]. Proc Natl Acad Sci U S A,2014,111(40):14518-14523.[17] VINOD M,CHENNAMSETTY I,COLIN S,et al.miR-206 controls LXRα expression and promotesLXR-mediated cholesterol efflux in macrophages[J].Biochim Biophys Acta,2014,1841(6):827-835.[18] ZHONG D,HUANG G,ZHANG Y,et al.MicroRNA-1 and microRNA-206 suppress LXRα-induced lipogenesis in hepatocytes[J]. Cell Signal,2013,25(6):1429-1437.[19] NGUYEN M A,WYATT H,SUSSER L,et al.Delivery of microRNAs by chitosan nanoparticles tofunctionally alter macrophage cholesterol efflux invitro and in vivo[J]. ACS Nano,2019,13(6):6491-6505.[20] KATTOOR A J,POTHINENI N V K,PALAGIRI D,et al. Oxidative stress in atherosclerosis[J/OL]. CurrAtheroscler Rep,2017,19(11):42[2020-01-15].https://doi.org/10.1007/s11883-017-0678-6.[21] SUGAMURA K,KEANEY J F. Reactive oxygenspecies in cardiovascular disease[J]. Free RadicalBiol Med,2011,51(5):978-992.[22] KORNFELD O S,HWANG S,DISATNIK M H,et al. Mitochondrial reactive oxygen species at theheart of the matter:new therapeutic approaches forcardiovascular diseases[J]. Circ Res,2015,116(11):1783-1799.[23] DOU Y,CHEN Y,ZHANG X J,et al. Nonproinflammatoryand responsive nanoplatformsfor targeted treatment of atherosclerosis[J/OL].Biomaterials,2017,143:93-108[2020-01-15].https://doi.org/10.1016/j.biomaterials.2017.07.035.[24] ALAARG A,PEREZ-MEDINA C,METSELAARJ M,et al. Applying nanomedicine in maladaptiveinflammation and angiogenesis[J/OL]. Adv DrugDelivery Rev,2017,119:143-158[2020-01-15].https://doi.org/10.1016/j.addr.2017.05.009.[25] CHUNG E J,TIRRELL M. Recent advances intargeted,self-assembling nanoparticles to addressvascular damage due to atherosclerosis[J]. AdvHealthcare Mater,2015,4(16):2408-2422.[26] GUO L L,XIAO J Y,LIU H J,et al. Seleniumnanoparticles alleviate hyperlipidemia and vascularinjury in ApoE-deficient mice by regulatingcholesterol metabolism and reducing oxidativestress[J]. Metallomics,2020,12(2):204-217.[27] WANG Y B,FU L L. Forms of selenium affect itstransport,uptake and glutathione peroxidase activityin the Caco-2 cell model[J]. Biol Trace Elem Res,2012,149(1):110-116.[28] SKALICKOVA S,MILOSAVLJEVIC V,CIHALOVA K,et al. Selenium nanoparticles asa nutritional supplement[J/OL]. Nutrition,2017,33:83-90[2020-01-15]. https://doi.org/10.1016/j.nut.2016.05.001.[29] MAHMOOD D F,ABDERRAZAK A,EL HADRIK,et al. The thioredoxin system as a therapeutictarget in human health and disease[J]. Anti RedoxSignal,2013,19(11):1266-1303.[30] CANESI F,MATEO V,COUCHIE D,et al. Athioredoxin-mimetic peptide exerts potent antiinflammatory,antioxidant,and atheroprotectiveeffects in ApoE2. Ki mice fed high fat diet[J].Cardiovasc Res. 2019,115(2):292-301.[31] COUCHIE D,VAISMAN B,ABDERRAZAKA,et al. Human plasma thioredoxin-80 increaseswith age and in ApoE-/- mice induces inflammation,angiogenesis,and atherosclerosis[J]. Circulation,2017,136(5):464-475.[32] WANG Y G,MIAO X,LIU Y C,et al.Dysregulation of histone acetyltransferasesand deacetylases in cardiovascular diseases[J/OL]. Oxidative Med Cell Longev,2014,2014:641979[2020-01-15]. https://doi.org/10.1155/2014/641979.[33] ZHOU B D,MARGARITI A,ZENG L F,et al. Roleof histone deacetylases in vascular cell homeostasisand arteriosclerosis[J]. Cardiovasc Res,2011,90(3):413-420.[34] XU S S,ALAM S,MARGARITI A. Epigeneticsin vascular disease - therapeutic potential of newagents[J]. Curr Vasc Pharmacol,2014,12(1):77-86.[35] CHEN F,LI X Y,AQUADRO E,et al. Inhibition of histone deacetylase reduces transcription of NADPHoxidases and ROS production and amelioratespulmonary arterial hypertension[J]. Free Radic BiolMed,2016,99:167-178[2020-01-15]. https://doi.org/10.1016/j.freeradbiomed.2016.08.003.[36] MANEA S A,VLAD M L,FENYO I M,et al.Pharmacological inhibition of histone deacetylasereduces NADPH oxidase expression,oxidativestress and the progression of atheroscleroticlesions in hypercholesterolemic apolipoproteinE-deficient mice; potential implications forhuman atherosclerosis[J/OL]. Redox Biol,2020,28:101338[2020-01-15]. https://doi.org/ 10.1016/j.redox.2019.101338.[37] GRIMALDI V,VIETRI M T,SCHIANO C,etal. Epigenetic reprogramming in atherosclerosis[J].Curr Atheroscle Rep,2015,17(2):476. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||