[1] WARDLAW J M,SMITH C,DICHGANS M.Mechanisms of sporadic cerebral small vessel disease:insights from neuroimaging[J]. Lancet Neurol,2013,12(5):483-497.[2] WARDLAW J M,SMITH E E,BIESSELS G J,etal. Neuroimaging standards for research into smallvessel disease and its contribution to ageing andneurodegeneration[J]. Lancet Neurol,2013,12(8):822-838.[3] VAN VELUW S J,SHIH A Y,SMITH E E,et al.Detection,risk factors,and functional consequencesof cerebral microinfarcts[J]. Lancet Neurol,2017,16(9):730-740.[4] LOW A,MAK E,STEFANIAK J D,et al. Peakwidth of skeletonized mean diffusivity as a markerof diffuse cerebrovascular damage[J/OL]. FrontNeurosci,2020,14:238[2020-06-15]. https://doi.org/10.3389/fnins.2020.00238.[5] CROALL I D,LOHNER V,MOYNIHAN B,et al.Using DTI to assess white matter microstructure incerebral small vessel disease(SVD)in multicentrestudies[J]. Clin Sci(Lond),2017,131(12):1361-1373.[6] YE Q,BAI F. Contribution of diffusion,perfusionand functional MRI to the disconnection hypothesisin subcortical vascular cognitive impairment[J].Stroke Vasc Neurol,2018,3(3):131-139.[7] HE Y,CHEN Z J,EVANS A C,Small-worldanatomical networks in the human brain revealed bycortical thickness from MRI[J]. Cereb Cortex,2007,17(10):2407-2419.[8] TULADHAR A M,VAN DIJK E,ZWIERS M P,etal. Structural network connectivity and cognition incerebral small vessel disease[J]. Hum Brain Mapp,2016,37(1):300-310.[9] LEE M H,SMYSER C D,SHIMONY J S. RestingstatefMRI:a review of methods and clinicalapplications[J]. AJNR Am J Neuroradiol,2013,34(10):1866-1872.[10] LAVDAS I,GLOCKER B,RUECKERT D,et al.Machine learning in whole-body MRI:experiencesand challenges from an applied study usingmulticentre data[J]. Clin Radiol,2019,74(5):346-356.[11] HSIEH Y Z,LUO Y C,PAN C,et al. Cerebralsmall vessel disease biomarkers detection on MRIsensor-based image and deep learning[J/OL]. Sensors(Basel),2019,19(11):2573[2020-06-15]. https://doi.org/10.3390/s19112573.[12] LAMBERT C,SAM NAREAN J,BENJAMIN P,et al. Characterising the grey matter correlates ofleukoaraiosis in cerebral small vessel disease[J/OL].Neuroimage Clin,2015,9:194-205[2020-06-15].https://doi.org/10.1016/j.nicl.2015.07.002.[13] CIULLI S,CITI L,SALVADORI E,et al.Prediction of impaired performance in trail makingtest in MCI patients with small vessel disease usingDTI data[J]. IEEE J Biomed Health Inform,2016,20(4):1026-1033.[14] PANTONI L,MARZI C,POGGESI A,et al. Fractaldimension of cerebral white matter:a consistentfeature for prediction of the cognitive performancein patients with small vessel disease and mildcognitive impairment[J/OL]. Neuroimage Clin,2019,24:101990[2020-06-15]. https://doi.org/10.1016/j.nicl.2019.101990.[15] PROMJUNYAKUL N O,LAHNA D L,KAYEJ A,et al. Comparison of cerebral blood flow andstructural penumbras in relation to white matterhyperintensities:a multimodal magnetic resonanceimaging study[J]. J Cereb Blood Flow Metab,2016,36(9):1528-1536.[16] SHI Y L,THRIPPLETON M J,MAKIN S D,etal. Cerebral blood flow in small vessel disease:asystematic review and meta-analysis[J]. J CerebBlood Flow Metab,2016,36(10):1653-1667.[17] BLAIR G W,HERNANDEZ M V,THRIPPLETONM J,et al. Advanced neuroimaging of cerebral smallvessel disease[J]. Curr Treat Options CardiovascMed,2017,19(7):56.[18] DUMAS A,DIERKSEN G A,GUROL M E,et al.Functional magnetic resonance imaging detection ofvascular reactivity in cerebral amyloid angiopathy[J].Ann Neurol,2012,72(1):76-81.[19] LI Y,LI M,ZHANG X Y,et al. Higher blood-brainbarrier permeability is associated with higher whitematter hyperintensities burden[J]. J Neurol,2017,264(7):1474-1481.[20] ZHANG C E,WONG S M,VAN DE HAAR H J,etal. Blood-brain barrier leakage is more widespreadin patients with cerebral small vessel disease[J].Neurology,2017,88(5):426-432.