Chinese Journal of Stroke ›› 2024, Vol. 19 ›› Issue (1): 112-119.DOI: 10.3969/j.issn.1673-5765.2024.01.015
Previous Articles Next Articles
YANG Yi1, LIU Qingyuan1, LIU Weiqi2, WANG Shuo1
Received:
2023-10-30
Online:
2024-01-20
Published:
2024-01-20
Contact:
WANG Shuo, E-mail: captain9858@126.com
杨溢1,刘清源1,刘伟奇2,王硕1
通讯作者:
王硕 captain9858@126.com
基金资助:
CLC Number:
YANG Yi, LIU Qingyuan, LIU Weiqi, WANG Shuo. A Three-Dimensional Measurement Method of Morphological Indicators of Unruptured Intracranial Aneurysm Based on Artificial Intelligence[J]. Chinese Journal of Stroke, 2024, 19(1): 112-119.
杨溢, 刘清源, 刘伟奇, 王硕. 基于人工智能的未破裂颅内动脉瘤形态学指标三维测量方法[J]. 中国卒中杂志, 2024, 19(1): 112-119.
[1] LI M H,CHEN S W,LI Y D,et al. Prevalence of unruptured cerebral aneurysms in Chinese adults aged 35 to 75 years:a cross-sectional study[J]. Ann Intern Med,2013,159(8):514-521. [2] MORITA A,KIRINO T,HASHI K,et al. The natural course of unruptured cerebral aneurysms in a Japanese cohort[J]. N Engl J Med,2012,366(26):2474-2482. [3] NIEUWKAMP D J,SETZ L E,ALGRA A,et al. Changes in case fatality of aneurysmal subarachnoid haemorrhage over time,according to age,sex,and region:a meta-analysis[J]. Lancet Neurol,2009,8(7):635-642. [4] ALGRA A M,LINDGREN A,VERGOUWEN M D I,et al. Procedural clinical complications,case-fatality risks,and risk factors in endovascular and neurosurgical treatment of unruptured intracranial aneurysms:a systematic review and meta-analysis[J]. JAMA Neurol,2019,76(3):282-293. [5] BACKES D,RINKEL G J E,GREVING J P,et al. ELAPSS score for prediction of risk of growth of unruptured intracranial aneurysms[J]. Neurology,2017,88(17):1600-1606. [6] DHAR S,TREMMEL M,MOCCO J,et al. Morphology parameters for intracranial aneurysm rupture risk assessment[J]. Neurosurgery,2008,63(2):185-197. [7] RYU C W,KWON O K,KOH J S,et al. Analysis of aneurysm rupture in relation to the geometric indices:aspect ratio,volume,and volume-to-neck ratio[J]. Neuroradiology,2011,53(11):883-889. [8] MOCCO J,BROWN R D,Jr,TORNER J C,et al. Aneurysm morphology and prediction of rupture:an international study of unruptured intracranial aneurysms analysis[J]. Neurosurgery,2018,82(4):491-496. [9] VAN DER KAMP L T,RINKEL G J E,VERBAAN D,et al. Risk of rupture after intracranial aneurysm growth[J]. JAMA Neurol,2021,78(10):1228-1235. [10] THOMPSON B G,BROWN R D,Jr,AMIN-HANJANI S,et al. Guidelines for the management of patients with unruptured intracranial aneurysms:a guideline for healthcare professionals from the American Heart Association/American Stroke Association[J]. Stroke,2015,46(8):2368-2400. [11] GREVING J P,WERMER M J H,BROWN R D,Jr,et al. Development of the PHASES score for prediction of risk of rupture of intracranial aneurysms:a pooled analysis of six prospective cohort studies[J]. Lancet Neurol,2014,13(1):59-66. [12] GENG J W,HU P,JI Z,et al. Accuracy and reliability of computer-assisted semi-automated morphological analysis of intracranial aneurysms:an experimental study with digital phantoms and clinical aneurysm cases[J]. Int J Comput Assist Radiol Surg,2020,15(10):1749-1759. [13] MALDANER N,STIENEN M N,BIJLENGA P,et al. Interrater agreement in the radiologic characterization of ruptured intracranial aneurysms based on computed tomography angiography[J/OL]. World Neurosurg,2017,103:876-882,e1[2023-09-20]. https://doi.org/10.1016/j.wneu.2017.04.131. [14] TIMMINS K M,KUIJF H J,VERGOUWEN M D I,et al. Reliability and agreement of 2D and 3D measurements on MRAs for growth assessment of unruptured intracranial aneurysms[J]. AJNR Am J Neuroradiol,2021,42(9):1598-1603. [15] ŻYŁKOWSKI J,KUNERT P,JAWORSKI M,et al. Changes of size and shape of small,unruptured intracranial aneurysms in repeated computed tomography angiography studies[J]. Wideochir Inne Tech Maloinwazyjne,2015,10(2):178-188. [16] TIMMINS K M,KUIJF H J,VERGOUWEN M D I,et al. Relationship between 3D morphologic change and 2D and 3D growth of unruptured intracranial aneurysms[J]. AJNR Am J Neuroradiol,2022,43(3):416-421. [17] LIU J J,CHEN Y C,LAN L,et al. Prediction of rupture risk in anterior communicating artery aneurysms with a feed-forward artificial neural network[J]. Eur Radiol,2018,28(8):3268-3275. [18] HEO J,PARK S J,KANG S H,et al. Prediction of intracranial aneurysm risk using machine learning [J/OL]. Sci Rep,2020,10(1):6921[2023-09-28]. https://doi.org/10.1038/s41598-020-63906-8. [19] WEI X,JIANG J,CAO W T,et al. Artificial intelligence assistance improves the accuracy and efficiency of intracranial aneurysm detection with CT angiography [J/OL]. Eur J Radiol,2022,149:110169[2023-09-21]. https://doi.org/10.1016/j.ejrad.2022.110169. [20] PARK A,CHUTE C,RAJPURKAR P,et al. Deep learning-assisted diagnosis of cerebral aneurysms using the HeadXNet model[J/OL]. JAMA Netw Open,2019,2(6):e195600[2023-09-29]. https://doi.org/10.1001/jamanetworkopen.2019.5600. [21] SICHTERMANN T,FARON A,SIJBEN R,et al. Deep learning-based detection of intracranial aneurysms in 3D TOF-MRA[J]. AJNR Am J Neuroradiol,2019,40(1):25-32. [22] RAJABZADEH-OGHAZ H,VARBLE N,SHALLWANI H,et al. Computer-assisted three-dimensional morphology evaluation of intracranial aneurysms[J/OL]. World Neurosurg,2018,119:e541-e550[2023-09-11]. https://doi.org/10.1016/j.wneu.2018.07.208. [23] CHAN S H,WONG K S,WOO Y M,et al. Volume measurement of the intracranial aneurysm:a discussion and comparison of the alternatives to manual segmentation[J]. J Cerebrovasc Endovasc Neurosurg,2014,16(4):358-363. [24] XIANG J P,NATARAJAN S K,TREMMEL M,et al. Hemodynamic-morphologic discriminants for intracranial aneurysm rupture[J]. Stroke,2011,42(1):144-152. [25] JIANG H,SHEN J,WENG Y X,et al. Morphology parameters for mirror posterior communicating artery aneurysm rupture risk assessment[J]. Neurol Med Chir(Tokyo),2015,55(6):498-504. [26] KANG H B,JI W J,QIAN Z H,et al. Aneurysm characteristics associated with the rupture risk of intracranial aneurysms:a self-controlled study [J/OL]. PLoS One,2015,10(11):e0142330[2023-09-15]. https://doi.org/10.1371/journal.pone.0142330. [27] ZHENG Y T,XU F,REN J M,et al. Assessment of intracranial aneurysm rupture based on morphology parameters and anatomical locations[J]. J Neurointerv Surg,2016,8(12):1240-1246. [28] DUAN Z H,LI Y H,GUAN S,et al. Morphological parameters and anatomical locations associated with rupture status of small intracranial aneurysms[J/OL]. Sci Rep,2018,8(1):6440[2023-09-11]. https://doi.org/10.1038/s41598-018-24732-1. [29] ZHANG J,CAN A,LAI P M R,et al. Age and morphology of posterior communicating artery aneurysms[J/OL]. Sci Rep,2020,10(1):11545[2023-09-11]. https://doi.org/10.1038/s41598-020-68276-9. [30] WIEBERS D O,WHISNANT J P,HUSTON J,3rd,et al. Unruptured intracranial aneurysms:natural history,clinical outcome,and risks of surgical and endovascular treatment[J]. Lancet,2003,362(9378):103-110. [31] TAWK R G,HASAN T F,D’SOUZA C E,et al. Diagnosis and treatment of unruptured intracranial aneurysms and aneurysmal subarachnoid hemorrhage[J]. Mayo Clin Proc,2021,96(7):1970-2000. [32] JIANG P J,LIU Q Y,WU J,et al. A novel scoring system for rupture risk stratification of intracranial aneurysms:a hemodynamic and morphological study[J/OL]. Front Neurosci,2018,12:596[2023-09-11]. https://doi.org/10.3389/fnins.2018.00596. [33] CORNELISSEN B M W,SCHNEIDERS J J,SPRENGERS M E,et al. Aneurysmal parent artery-specific inflow conditions for complete and incomplete circle of Willis configurations[J]. AJNR Am J Neuroradiol,2018,39(5):910-915. [34] GHOLAMPOUR S,MEHRJOO S. Effect of bifurcation in the hemodynamic changes and rupture risk of small intracranial aneurysm[J]. Neurosurg Rev,2021,44(3):1703-1712. [35] PICCINELLI M,BACIGALUPPI S,BOCCARDI E,et al. Geometry of the internal carotid artery and recurrent patterns in location,orientation,and rupture status of lateral aneurysms:an image-based computational study[J]. Neurosurgery,2011,68(5):1270-1285. [36] SADATOMO T,YUKI K,MIGITA K,et al. Evaluation of relation among aneurysmal neck,parent artery,and daughter arteries in middle cerebral artery aneurysms,by three-dimensional digital subtraction angiography[J]. Neurosurg Rev,2005,28(3):196-200. [37] TATESHIMA S,CHIEN A,SAYRE J,et al. The effect of aneurysm geometry on the intra-aneurysmal flow condition[J]. Neuroradiology,2010,52(12):1135-1141. [38] SUGIYAMA S,NIIZUMA K,NAKAYAMA T,et al. Relative residence time prolongation in intracranial aneurysms:a possible association with atherosclerosis[J]. Neurosurgery,2013,73(5):767-776. [39] UJIIE H,TACHIBANA H,HIRAMATSU O,et al. Effects of size and shape(aspect ratio)on the hemodynamics of saccular aneurysms:a possible index for surgical treatment of intracranial aneurysms[J]. Neurosurgery,1999,45(1):119-130. [40] NADER-SEPAHI A,CASIMIRO M,SEN J,et al. Is aspect ratio a reliable predictor of intracranial aneurysm rupture?[J]. Neurosurgery,2004,54(6):1343-1348. [41] LAURIC A,GREIM-KUCZEWSKI K,ANTONOV A,et al. Proximal parent vessel tapering is associated with aneurysm at the middle cerebral artery bifurcation[J]. Neurosurgery,2019,84(5):1082-1089. [42] FENG X,QI P,WANG L J,et al. Relationship between cerebrovascular atherosclerotic stenosis and rupture risk of unruptured intracranial aneurysm:a single-center retrospective study[J/OL]. Clin Neurol Neurosurg,2019,186:105543[2023-09-11]. https://doi.org/10.1016/j.clineuro.2019.105543. [43] ANTONOV A,KONO K,GREIM-KUCZEWSKI K,et al. Proximal stenosis is associated with rupture status in middle cerebral artery aneurysms[J/OL]. World Neurosurg,2018,109:e835-e844[2023-09-11]. https://doi.org/10.1016/j.wneu.2017.10.108. [44] RAHMAN M,SMIETANA J,HAUCK E,et al. Size ratio correlates with intracranial aneurysm rupture status:a prospective study[J]. Stroke,2010,41(5):916-920. [45] RAGHAVAN M L,MA B,HARBAUGH R E. Quantified aneurysm shape and rupture risk[J]. J Neurosurg,2005,102(2):355-362. [46] JUCHLER N,SCHILLING S,BIJLENGA P,et al. Shape trumps size:image-based morphological analysis reveals that the 3D shape discriminates intracranial aneurysm disease status better than aneurysm size[J/OL]. Front Neurol,2022,13:809391[2023-09-11]. https://doi.org/10.3389/fneur. 2022.809391. [47] MALIK K M,ANJUM S M,SOLTANIAN-ZADEH H,et al. A framework for intracranial saccular aneurysm detection and quantification using morphological analysis of cerebral angiograms [J/OL]. IEEE Access,2018,6:7970-7986[2023-09-11]. https://doi.org/10.1109/ACCESS.2018.2799307. [48] PICCINELLI M,STEINMAN D A,HOI Y,et al. Automatic neck plane detection and 3D geometric characterization of aneurysmal sacs[J]. Ann Biomed Eng,2012,40(10):2188-2211. [49] CÁRDENES R,POZO J M,BOGUNOVIC H,et al. Automatic aneurysm neck detection using surface Voronoi diagrams[J]. IEEE Trans Med Imaging,2011,30(10):1863-1876. [50] LARRABIDE I,CRUZ VILLA-URIOL M,CÁRDENES R,et al. Three-dimensional morphological analysis of intracranial aneurysms:a fully automated method for aneurysm sac isolation and quantification[J]. Med Phys,2011,38(5):2439-2449. [51] JERMAN T,PERNUŠ F,LIKAR B,et al. Automatic cutting plane identification for computer-aided analysis of intracranial aneurysms[EB/OL]//2016 23rd International Conference on Pattern Recognition(ICPR). Cancún,México:ICPR,2016:1484-1489. [52] FORD M D,HOI Y,PICCINELLI M,et al. An objective approach to digital removal of saccular aneurysms:technique and applications[J/OL]. Br J Radiol,2009,82 Spec No 1:S55-S61[2023-09-11]. https://doi.org/10.1259/bjr/67593727. [53] MERRITT W C,BERNS H F,DUCRUET A F,et al. Definitions of intracranial aneurysm size and morphology:a call for standardization[J/OL]. Surg Neurol Int,2021,12:506[2023-09-11]. https://doi.org/10.25259/SNI_576_2021. [54] LIU Q L,JIANG P,JIANG Y H,et al. Prediction of aneurysm stability using a machine learning model based on pyradiomics-derived morphological features[J]. Stroke,2019,50(9):2314-2321. [55] LIU Q Y,YANG Y,YANG J H,et al. Rebleeding of ruptured intracranial aneurysm after admission:a multidimensional Nomogram model to risk assessment[J/OL]. Front Aging Neurosci,2021,13:692615[2023-09-11]. https://doi.org/10.3389/fnagi.2021.692615. [56] LV N,KARMONIK C,CHEN S Y,et al. Wall enhancement,hemodynamics,and morphology in unruptured intracranial aneurysms with high rupture risk[J]. Transl Stroke Res,2020,11(5):882-889. [57] MU N,LYU Z H,REZAEITALESHMAHALLEH M,et al. An attention residual u-net with differential preprocessing and geometric postprocessing:learning how to segment vasculature including intracranial aneurysms[J/OL]. Med Image Anal,2023,84:102697[2023-09-11]. https://doi.org/10.1016/j.media. 2022.102697. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||