Chinese Journal of Stroke ›› 2024, Vol. 19 ›› Issue (9): 1066-1076.DOI: 10.3969/j.issn.1673-5765.2024.09.012
Previous Articles Next Articles
ZHOU Hongyu, LI Zixiao, WANG Yongjun
Received:
2024-04-01
Online:
2024-09-20
Published:
2024-09-20
Contact:
WANG Yongjun, E-mail: yongjunwang@ncrcnd.org.cn
周宏宇,李子孝,王拥军
通讯作者:
王拥军 yongjunwang@ncrcnd.org.cn
CLC Number:
ZHOU Hongyu, LI Zixiao, WANG Yongjun. Research Progress on Radiomics-Based Brain Age Prediction and Ischemic Stroke[J]. Chinese Journal of Stroke, 2024, 19(9): 1066-1076.
周宏宇, 李子孝, 王拥军. 基于影像组学预测大脑年龄与缺血性卒中的研究进展[J]. 中国卒中杂志, 2024, 19(9): 1066-1076.
[1] COLE J H,FRANKE K. Predicting age using neuroimaging:innovative brain ageing biomarkers[J]. Trends Neurosci,2017,40(12):681-690. [2] ELLIOTT M L,BELSKY D W,KNODT A R,et al. Brain-age in midlife is associated with accelerated biological aging and cognitive decline in a longitudinal birth cohort[J]. Mol Psychiatry,2021,26(8):3829-3838. [3] HAHN T,ERNSTING J,WINTER N R,et al. An uncertainty-aware,shareable,and transparent neural network architecture for brain-age modeling[J/OL]. Sci Adv,2022,8(1):eabg9471[2024-01-06]. https://doi.org/10.1126/sciadv.abg9471. [4] MADOLE J W,RITCHIE S J,COX S R,et al. Aging-sensitive networks within the human structural connectome are implicated in late-life cognitive declines[J]. Biol Psychiatry,2021,89(8):795-806. [5] WANG J,KNOL M J,TIULPIN A,et al. Gray matter age prediction as a biomarker for risk of dementia[J]. Proc Natl Acad Sci U S A,2019,116(42):21213-21218. [6] XI Y B,WU X S,CUI L B,et al. Neuroimaging-based brain-age prediction of first-episode schizophrenia and the alteration of brain age after early medication[J/OL]. Br J Psychiatry,2021,1-8[2024-01-06]. https://doi.org/10.1192/bjp.2021.169. [7] DE LANGE A G,ANATüRK M,SURI S,et al. Multimodal brain-age prediction and cardiovascular risk:the Whitehall Ⅱ MRI sub-study[J/OL]. Neuroimage,2020,222:117292[2024-01-06]. https://doi.org/10.1016/j.neuroimage.2020.117292. [8] EGOROVA N,LIEM F,HACHINSKI V,et al. Predicted brain age after stroke[J/OL]. Front Aging Neurosci,2019,11:348[2024-01-06]. https://doi.org/10.3389/fnagi.2019.00348. [9] MISHRA S,BEHESHTI I,KHANNA P. A review of neuroimaging-driven brain age estimation for identification of brain disorders and health conditions[J/OL]. IEEE Rev Biomed Eng,2023,16:371-385[2024-01-06]. https://doi.org/10.1109/RBME.2021.3107372. [10] BASHYAM V M,ERUS G,DOSHI J,et al. MRI signatures of brain age and disease over the lifespan based on a deep brain network and 14 468 individuals worldwide[J]. Brain,2020,143(7):2312-2324. [11] JIANG R T,SCHEINOST D,ZUO N M,et al. A neuroimaging signature of cognitive aging from whole-brain functional connectivity[J/OL]. Adv Sci(Weinh),2022,9(24):e2201621[2024-01-06]. https://doi.org/10.1002/advs.202201621. [12] CAI H J,GAO Y,LIU M H. Graph transformer geometric learning of brain networks using multimodal mr images for brain age estimation[J]. IEEE Trans Med Imaging,2023,42(2):456-466. [13] CHEN M X,WANG Y Q,SHI Y T,et al. Brain age prediction based on quantitative susceptibility mapping using the segmentation transformer[J]. IEEE J Biomed Health Inform,2024,28(2):1012-1021. [14] JONES D T,LEE J,TOPOL E J. Digitising brain age[J/OL]. Lancet,2022,400(10357):988[2024-01-06]. https://doi.org/10.1016/S0140-6736(22)01782-2. [15] ASHBURNER J. SPM:a history[J]. Neuroimage,2012,62(2):791-800. [16] ASHBURNER J,FRISTON K J. Voxel-based morphometry—the methods[J]. Neuroimage,2000,11(6 Pt 1):805-821. [17] JONSSON B A,BJORNSDOTTIR G,THORGEIRSSON T E,et al. Brain age prediction using deep learning uncovers associated sequence variants[J/OL]. Nat Commun,2019,10(1):5409[2024-01-06]. https://doi.org/10.1038/s41467-019-13163-9. [18] DUFUMIER B,GRIGIS A,VICTOR J,et al. OpenBHB:a large-scale multi-site brain MRI dataset for age prediction and debiasing[J/OL]. Neuroimage,2022,263:119637[2024-01-06]. https://doi.org/10.1016/j.neuroimage.2022.119637. [19] WENZEL F,MEYER C,STEHLE T,et al. Rapid fully automatic segmentation of subcortical brain structures by shape-constrained surface adaptation[J/OL]. Med Image Anal,2018,46:146-161[2024-01-06]. https://doi.org/10.1016/j.media.2018.03.001. [20] FRANKE K,ZIEGLER G,KLÖPPEL S,et al. Estimating the age of healthy subjects from T1-weighted MRI scans using kernel methods:exploring the influence of various parameters[J]. Neuroimage,2010,50(3):883-892. [21] XIFRA-PORXAS A,GHOSH A,MITSIS G D,et al. Estimating brain age from structural MRI and MEG data:insights from dimensionality reduction techniques[J/OL]. Neuroimage,2021,231:117822[2024-01-06]. https://doi.org/10.1016/j.neuroimage.2021.117822. [22] VARIKUTI D P,GENON S,SOTIRAS A,et al. Evaluation of non-negative matrix factorization of grey matter in age prediction[J/OL]. Neuroimage,2018,173:394-410[2024-01-06]. https://doi.org/10.1016/j.neuroimage.2018.03.007. [23] COLE J H,POUDEL R P K,TSAGKRASOULIS D,et al. Predicting brain age with deep learning from raw imaging data results in a reliable and heritable biomarker[J/OL]. Neuroimage,2017,163:115-124[2024-01-06]. https://doi.org/10.1016/j.neuroimage.2017.07.059. [24] PENG H,GONG W K,BECKMANN C F,et al. Accurate brain age prediction with lightweight deep neural networks[J/OL]. Med Image Anal,2021,68:101871[2024-01-06]. https://doi.org/10.1016/j.media.2020.101871. [25] DUBINA T L,DYUNDIKOVA V A,ZHUK E V. Biological age and its estimation. Ⅱ. Assessment of biological age of albino rats by multiple regression analysis[J]. Exp Gerontol,1983,18(1):5-18. [26] SONE D,BEHESHTI I,MAIKUSA N,et al. Neuroimaging-based brain-age prediction in diverse forms of epilepsy:a signature of psychosis and beyond[J]. Mol Psychiatry,2021,26(3):825-834. [27] DIAS M F M,CARVALHO P,DUARTE J V,et al. Deformation fields:a new source of information to predict brain age[J/OL]. J Neural Eng,2022,19(3):6025[2024-01-06]. https://doi.org/10.1088/1741-2552/ac7003. [28] MASSETT R J,MAHER A S,IMMS P E,et al. Regional neuroanatomic effects on brain age inferred using magnetic resonance imaging and ridge regression[J]. J Gerontol A Biol Sci Med Sci,2023,78(6):872-881. [29] COLE J H. Multimodality neuroimaging brain-age in UK Biobank:relationship to biomedical,lifestyle,and cognitive factors[J/OL]. Neurobiol Aging,2020,92:34-42[2024-01-06]. https://doi.org/10.1016/j.neurobiolaging.2020.03.014. [30] MODABBERNIA A,WHALLEY H C,GLAHN D C,et al. Systematic evaluation of machine learning algorithms for neuroanatomically-based age prediction in youth[J]. Hum Brain Mapp,2022,43(17):5126-5140. [31] BECK D,DE LANGE A G,PEDERSEN M L,et al. Cardiometabolic risk factors associated with brain age and accelerate brain ageing[J]. Hum Brain Mapp,2022,43(2):700-720. [32] COLE J H,MARIONI R E,HARRIS S E,et al. Brain age and other bodily‘ages’:implications for neuropsychiatry[J]. Mol Psychiatry,2019,24(2):266-281. [33] WANG H Z,TREDER M S,MARSHALL D,et al. A skewed loss function for correcting predictive bias in brain age prediction[J]. IEEE Trans Med Imaging,2023,42(6):1577-1589. [34] LE T T,KUPLICKI R T,MCKINNEY B A,et al. A nonlinear simulation framework supports adjusting for age when analyzing BrainAGE[J/OL]. Front Aging Neurosci,2018,10:317[2024-01-06]. https://doi.org/10.3389/fnagi.2018.00317. [35] CHENG J,LIU Z Y,GUAN H,et al. Brain age estimation from MRI using cascade networks with ranking loss[J]. IEEE Trans Med Imaging,2021,40(12):3400-3412. [36] SALIH A,NICHOLS T,SZABO L,et al. Conceptual overview of biological age estimation[J]. Aging Dis,2023,14(3):583-588. [37] HE S,FENG Y F,ELLEN GRANT P,et al. Deep relation learning for regression and its application to brain age estimation[J]. IEEE Trans Med Imaging,2022,41(9):2304-2317. [38] HE S,GRANT P E,OU Y M. Global-local transformer for brain age estimation[J]. IEEE Trans Med Imaging,2022,41(1):213-224. [39] KLEMERA P,DOUBAL S. A new approach to the concept and computation of biological age[J]. Mech Ageing Dev,2006,127(3):240-248. [40] WAGEN A Z,COATH W,KESHAVAN A,et al. Life course,genetic,and neuropathological associations with brain age in the 1946 British Birth cohort:a population-based study[J/OL]. Lancet Healthy Longev,2022,3(9):e607-e616[2024-01-06]. https://doi.org/10.1016/S2666-7568(22)00167-2. [41] WRIGGLESWORTH J,HARDING I H,WARD P,et al. Factors influencing change in brain-predicted age difference in a cohort of healthy older individuals[J]. J Alzheimers Dis Rep,2022,6(1):163-176. [42] BISKUP E,QUEVENCO F C,FERRETTI M T,et al. Sex differences in brain metabolic activity:beyond the concept of brain age[J]. Proc Natl Acad Sci U S A,2019,116(22):10630-10631. [43] SANFORD N,GE R Y,ANTONIADES M,et al. Sex differences in predictors and regional patterns of brain age gap estimates[J]. Hum Brain Mapp,2022,43(15):4689-4698. [44] SUBRAMANIAPILLAI S,SURI S,BARTH C,et al. Sex- and age-specific associations between cardiometabolic risk and white matter brain age in the UK Biobank cohort[J]. Hum Brain Mapp,2022,43(12):3759-3774. [45] FRANKE K,HAGEMANN G,SCHLEUSSNER E,et al. Changes of individual BrainAGE during the course of the menstrual cycle[J/OL]. Neuroimage,2015,115:1-6[2024-01-06]. https://doi.org/10.1016/j.neuroimage.2015.04.036. [46] RAUSEO E,SALIH A,RAISI-ESTABRAGH Z,et al. Ischemic heart disease and vascular risk factors are associated with accelerated brain aging[J]. JACC Cardiovasc Imaging,2023,16(7):905-915. [47] BECK D,DE LANGE A G,ALNÆS D,et al. Adipose tissue distribution from body MRI is associated with cross-sectional and longitudinal brain age in adults[J/OL]. Neuroimage Clin,2022,33:102949[2024-01-06]. https://doi.org/10.1016/j.nicl.2022.102949. [48] LEVAKOV G,KAPLAN A,YASKOLKA MEIR A,et al. The effect of weight loss following 18 months of lifestyle intervention on brain age assessed with resting-state functional connectivity[J/OL]. Elife,2023,12:e83604[2024-01-06]. https://doi.org/10.7554/eLife.83604. [49] ZEIGHAMI Y,DADAR M,DAOUST J,et al. Impact of weight loss on brain age:improved brain health following bariatric surgery[J/OL]. Neuroimage,2022,259:119415[2024-01-06]. https://doi.org/10.1016/j.neuroimage.2022.119415. [50] MO C,WANG J T,YE Z Y,et al. Evaluating the causal effect of tobacco smoking on white matter brain aging:a two-sample Mendelian randomization analysis in UK Biobank[J]. Addiction,2023,118(4):739-749. [51] LINLI Z Q,FENG J F,ZHAO W,et al. Associations between smoking and accelerated brain ageing[J/OL]. Prog Neuropsychopharmacol Biol Psychiatry,2022,113:110471[2024-01-06]. https://doi:10.1016/j.pnpbp.2021.110471. [52] FUNK-WHITE M,WING D,EYLER L T,et al. Neuroimaging-derived predicted brain age and alcohol use among community-dwelling older adults[J]. Am J Geriatr Psychiatry,2023,31(9):669-678. [53] GUGGENMOS M,SCHMACK K,SEKUTOWICZ M,et al. Quantitative neurobiological evidence for accelerated brain aging in alcohol dependence[J/OL]. Transl Psychiatry,2017,7(12):1279[2024-01-06]. https://doi.org/10.1038/s41398-017-0037-y. [54] BEHESHTI I. Cocaine destroys gray matter brain cells and accelerates brain aging[J/OL]. Biology(Basel),2023,12(5):752[2024-01-06]. https://doi.org/10.3390/biology12050752. [55] KNODT A R,MEIER M H,AMBLER A,et al. Diminished structural brain integrity in long-term cannabis users reflects a history of polysubstance use[J]. Biol Psychiatry,2022,92(11):861-870. [56] BUSBY N,NEWMAN-NORLUND S,SAYERS S,et al. Lower socioeconomic status is associated with premature brain aging[J/OL]. Neurobiol Aging,2023,130:135-140[2024-01-06]. https://doi.org/10.1016/j.neurobiolaging.2023.06.012. [57] JAWINSKI P,MARKETT S,DREWELIES J,et al. Linking brain age gap to mental and physical health in the Berlin Aging study Ⅱ[J/OL]. Front Aging Neurosci,2022,14:791222[2024-01-06]. https://doi.org/10.3389/fnagi.2022.791222. [58] LAY-YEE R,HARIRI A R,KNODT A R,et al. Social isolation from childhood to mid-adulthood:is there an association with older brain age?[J] Psychol Med,2023,53(16):7874-7882. [59] SONE D,BEHESHTI I,SHINAGAWA S,et al. Neuroimaging-derived brain age is associated with life satisfaction in cognitively unimpaired elderly:a community-based study[J/OL]. Transl Psychiatry,2022,12(1):25[2024-01-06]. https://doi.org/10.1038/s41398-022-01793-5. [60] WEIHS A,FRENZEL S,WITTFELD K,et al. Associations between sleep apnea and advanced brain aging in a large-scale population study[J/OL]. Sleep,2021,44(3):zsaa204[2024-01-06]. https://doi.org/10.1093/sleep/zsaa204. [61] RAMDUNY J,BASTIANI M,HUEDEPOHL R,et al. The association between inadequate sleep and accelerated brain ageing[J/OL]. Neurobiol Aging,2022,114:1-14[2024-01-06]. https://doi.org/10.1016/j.neurobiolaging.2022.02.005. [62] STOLICYN A,LYALL L M,LYALL D M,et al. Comprehensive assessment of sleep duration,insomnia,and brain structure within the UK Biobank cohort[J/OL]. Sleep,2024,47(2):zsad274[2024-01-06]. https://doi.org/10.1093/sleep/zsad274. [63] DINTICA C S,HABES M,ERUS G,et al. Elevated blood pressure is associated with advanced brain aging in mid-life:a 30-year follow-up of the CARDIA study[J]. Alzheimers Dement,2023,19(3):924-932. [64] FENG L,YE Z Y,MO C,et al. Elevated blood pressure accelerates white matter brain aging among late middle-aged women:a Mendelian randomization study in the UK Biobank[J]. J Hypertens,2023,41(11):1811-1820. [65] FRANKE K,GASER C,MANOR B,et al. Advanced BrainAGE in older adults with type 2 diabetes mellitus[J/OL]. Front Aging Neurosci,2013,5:90[2024-01-06]. https://doi.org/10.3389/fnagi.2013.00090. [66] HABES M,JACOBSON A M,BRAFFETT B H,et al. Patterns of regional brain atrophy and brain aging in middle- and older-aged adults with type 1 diabetes[J/OL]. JAMA Netw Open,2023,6(6):e2316182[2024-01-06]. https://doi.org/10.1001/jamanetworkopen.2023.16182. [67] JHA M K,CHIN FATT C R,MINHAJUDDIN A,et al. Accelerated brain aging in individuals with diabetes:association with poor glycemic control and increased all-cause mortality[J/OL]. Psychoneuroendocrinology,2022,145:105921[2024-01-06]. https://doi.org/10.1016/j.psyneuen.2022.105921. [68] HUNG P S,ZHANG J Y,NOORANI A,et al. Differential expression of a brain aging biomarker across discrete chronic pain disorders[J]. Pain,2022,163(8):1468-1478. [69] KUCHCINSKI G,RUMETSHOFER T,ZERVIDES K A,et al. MRI BrainAGE demonstrates increased brain aging in systemic lupus erythematosus patients[J/OL]. Front Aging Neurosci,2023,15:1274061[2024-01-06]. https://doi.org/10.3389/fnagi.2023.1274061. [70] LIEW S L,SCHWEIGHOFER N,COLE J H,et al. Association of brain age,lesion volume,and functional outcome in patients with stroke[J/OL]. Neurology,2023,100(20):e2103-e2113[2024-01-06]. https://doi.org/10.1212/WNL.0000000000207219. [71] BRETZNER M,BONKHOFF A K,SCHIRMER M D,et al. Radiomics-derived brain age predicts functional outcome after acute ischemic stroke[J/OL]. Neurology,2023,100(8):e822-e833[2024-01-06]. https://doi.org/10.1212/WNL.0000000000201596. [72] AAMODT E B,ALNÆS D,DE LANGE A G,et al. Longitudinal brain age prediction and cognitive function after stroke[J/OL]. Neurobiol Aging,2023,122:55-64[2024-01-06]. https://doi.org/10.1016/j.neurobiolaging.2022.10.007. [73] SHI Y C,MAO H X,GAO Q Q,et al. Potential of brain age in identifying early cognitive impairment in subcortical small-vessel disease patients[J/OL]. Front Aging Neurosci,2022,14:973054[2024-01-06]. https://doi.org/10.3389/fnagi.2022.973054. [74] KRISTINSSON S,BUSBY N,RORDEN C,et al. Brain age predicts long-term recovery in post-stroke aphasia[J/OL]. Brain Commun,2022,4(5):fcac252[2024-01-06]. https://doi.org/10.1093/braincomms/fcac252. [75] BUSBY N,WILMSKOETTER J,GLEICHGERRCHT E,et al. Advanced brain age and chronic poststroke aphasia severity[J/OL]. Neurology,2023,100(11):e1166-e1176[2024-01-06]. https://doi.org/10.1212/WNL.0000000000201693. [76] WILMSKOETTER J,BUSBY N,HE X S,et al. Dynamic network properties of the superior temporal gyrus mediate the impact of brain age gap on chronic aphasia severity[J/OL]. Commun Biol,2023,6(1):727[2024-01-06]. https://doi.org/10.1038/s42003-023-05119-z. [77] LEONARDSEN E H,VIDAL-PIÑEIRO D,ROE J M,et al. Genetic architecture of brain age and its causal relations with brain and mental disorders[J]. Mol Psychiatry,2023,28(7):3111-3120. [78] SMITH S M,ELLIOTT L T,ALFARO-ALMAGRO F,et al. Brain aging comprises many modes of structural and functional change with distinct genetic and biophysical associations[J/OL]. Elife,2020,9:e52677[2024-01-06]. https://doi.org/10.7554/eLife.52677. [79] GIALLUISI A,SANTORO A,TIROZZI A,et al. Epidemiological and genetic overlap among biological aging clocks:new challenges in biogerontology[J/OL]. Ageing Res Rev,2021,72:101502[2024-01-06]. https://doi.org/10.1016/j.arr.2021.101502. [80] YU J H,MATHI KANCHI M,RAWTAER I,et al. Differences between multimodal brain-age and chronological-age are linked to telomere shortening[J/OL]. Neurobiol Aging,2022,115:60-69[2024-01-06]. https://doi.org/10.1016/j.neurobiolaging.2022.03.015. [81] ZHANG X,CHENG S,LI Z X,et al. Telomere length and stroke recurrence after ischemic stroke and TIA[J]. Int J Stroke,2023,18(2):208-214. [82] WAZIRY R,GU Y,BOEHME A K,et al. Measures of aging biology in saliva and blood as novel biomarkers for stroke and heart disease in older adults[J/OL]. Neurology,2023,101(23):e2355-e2363[2024-01-06]. https://doi.org/10.1212/WNL.0000000000207909. [83] REN B Y,WU Y T,HUANG L M,et al. Deep transfer learning of structural magnetic resonance imaging fused with blood parameters improves brain age prediction[J]. Hum Brain Mapp,2022,43(5):1640-1656. [84] HAHN T,FISCH L,ERNSTING J,et al. From‘loose fitting’to high-performance,uncertainty-aware brain-age modelling[J/OL]. Brain,2021,144(3):e31[2024-01-06]. https://doi.org/10.1093/brain/awaa454. [85] JÖNEMO J,AKBAR M U,KÄMPE R,et al. Efficient brain age prediction from 3D MRI volumes using 2D projections[J/OL]. Brain Sci,2023,13(9):1329[2024-01-06]. https://doi.org/10.3390/brainsci13091329. [86] DARTORA C,MARSEGLIA A,MÅRTENSSON G,et al. A deep learning model for brain age prediction using minimally preprocessed T1W images as input[J/OL]. Front Aging Neurosci,2024,15:1303036[2024-01-06]. https://doi.org/10.3389/fnagi.2023.1303036. [87] ZHANG Y,XIE R,BEHESHTI I,et al. Improving brain age prediction with anatomical feature attention-enhanced 3D-CNN[J/OL]. Comput Biol Med,2024,169:107873[2024-01-06]. https://doi.org/10.1016/j.compbiomed.2023.107873. [88] BASS C,SILVA M D,SUDRE C,et al. ICAM-Reg:interpretable classification and regression with feature attribution for mapping neurological phenotypes in individual scans[J]. IEEE Trans Med Imaging,2023,42(4):959-970. [89] TIAN L X,MA L,WANG L L. Alterations of functional connectivities from early to middle adulthood:clues from multivariate pattern analysis of resting-state fMRI data[J/OL]. Neuroimage,2016,129:389-400[2024-01-06]. https://doi.org/10.1016/j.neuroimage.2016.01.039. [90] AL ZOUBI O,KI WONG C,KUPLICKI R T,et al. Predicting age from brain EEG signals—a machine learning approach[J/OL]. Front Aging Neurosci,2018,10:184[2024-01-06]. https://doi.org/10.3389/fnagi.2018.00184. [91] BRUSINI I,MACNICOL E,KIM E,et al. MRI-derived brain age as a biomarker of ageing in rats:validation using a healthy lifestyle intervention[J/OL]. Neurobiol Aging,2022,109:204-215[2024-01-06]. https://doi.org/10.1016/j.neurobiolaging. 2021.10.004. [92] HE S,GUAN Y,CHENG C H,et al. Human-to-monkey transfer learning identifies the frontal white matter as a key determinant for predicting monkey brain age[J/OL]. Front Aging Neurosci,2023,15:1249415[2024-01-06]. https://doi.org/10.3389/fnagi.2023.1249415. |
[1] | CAO Liming, REN Lijie. Progress and Prospects of Diagnosis and Treatment Techniques for Acute Ischemic Stroke [J]. Chinese Journal of Stroke, 2024, 19(9): 983-989. |
[2] | ZHU Jiaqian, CAO Liming. Research Progress of the Diagnostic Methods and Techniques for Patent Foramen Ovale [J]. Chinese Journal of Stroke, 2024, 19(9): 991-997. |
[3] |
FU Pengcheng, CAO Liming, ZHU Jiaqian, ZHAO Guiyu, XU Gelin.
Research Progress of Reperfusion Therapy for Large Artery Atherosclerotic Ischemic Stroke [J]. Chinese Journal of Stroke, 2024, 19(9): 1004-1011. |
[4] | ZHANG Liping, CAO Liming, XIAO Nan, LIAO Yuqi, CHI Feng, YU Yanni, REN Lijie. Research Progress and Challenges of Nanomaterials in the Diagnosis and Treatment of Ischemic Stroke [J]. Chinese Journal of Stroke, 2024, 19(9): 1012-1017. |
[5] | WANG Xiaorui, LUO Song, ZOU Liangyu, QU Hongdang, CUI Xue, ZHAO Yujie. Value of Eosinophil-to-Monocyte Ratio in Predicting the Prognosis of Patients with Acute Ischemic Stroke Receiving Intravenous Thrombolysis [J]. Chinese Journal of Stroke, 2024, 19(9): 1025-1033. |
[6] | WANG Shuo, YU Ping, ZHANG Ning, WANG Chunxue. Bibliometric Analysis of References on the Correlation between Ischemic Stroke and Sleep from 2013 to 2023 [J]. Chinese Journal of Stroke, 2024, 19(9): 1040-1047. |
[7] | ABULANIYAZI Anaguli, WU Xiaoxin, LI Jiaoxing, LI Zhuhao, SHENG Wenli. Research Progress on Factors Related to the Susceptibility Vessel Sign and its Clinical Application in Acute Ischemic Stroke [J]. Chinese Journal of Stroke, 2024, 19(9): 1077-1085. |
[8] | YANG Jinbo, ZHANG Cong. Progress on the Application of High-Resolution Vessel Wall Imaging in Patients with Ischemic Stroke [J]. Chinese Journal of Stroke, 2024, 19(9): 1086-1093. |
[9] | WU Chunyan, YIN Yashi, WANG Guangzhi, YUE Kuitao. Evaluation and Application of Medical Imaging for Acute Ischemic Stroke at Different Time Windows: A Review [J]. Chinese Journal of Stroke, 2024, 19(9): 1094-1101. |
[10] |
ZHANG Mengruo, XU Shouchen, SUI Cuicui, LI Yukui, WANG Xueli.
The Effects of Lower Limb Rehabilitation Robot Combined with Scalp Acupuncture on the Walking Efficiency and Coordination Function in Elderly Patients with Ischemic Stroke [J]. Chinese Journal of Stroke, 2024, 19(8): 902-908. |
[11] |
WU Yuqian, ZHANG Yumei, ZANG Dawei, FAN Xiaowei, WANG Anxin, ZHANG Xiaoli, MENG Xia.
Study on the Reliability, Validity, and Sensitivity of Action Research Arm Test Scale in Evaluating the Function of Hemiplegic Upper Limb and Hand in Subacute Stage Ischemic Stroke Patients [J]. Chinese Journal of Stroke, 2024, 19(8): 915-923. |
[12] |
MO Qiuhong, DING Xiaobo, LI Jing, ZHANG Yanbo, LI Weirong.
Research on Prediction of Recurrence of Minor Ischemic Stroke Based on Interpretable Machine Learning Models [J]. Chinese Journal of Stroke, 2024, 19(8): 924-930. |
[13] |
GAO Deyu, WANG Yu, WANG Xin, ZHAO Tongtong, WANG Sujie.
Exploring the Correlation between White Matter Hyperintensity, White Matter Hyperintensity Penumbra and Cognitive Impairment in Cerebral Small Vessel Disease Based on 3D-ASL and DKI Sequences [J]. Chinese Journal of Stroke, 2024, 19(8): 931-937. |
[14] |
LU Dan, CHEN Weiqi, WANG Yaping, DUAN Wanying, GUO Lei, WANG Ling, LIU Liping, XU Anding, WANG Yongjun, Cerebroprotection Academic Roundtable Academic Committee of Chinese Stroke Association .
Scientific Statements on Brain Cytoprotection in Ischemic Stroke—A Scientific Statement from the Chinese Stroke Association [J]. Chinese Journal of Stroke, 2024, 19(8): 938-955. |
[15] | LI Guangshuo, ZHAO Xingquan. Interpretation of the Chinese Guidelines for Diagnosis and Treatment of Acute Ischemic Stroke 2023 [J]. Chinese Journal of Stroke, 2024, 19(8): 956-961. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||