Chinese Journal of Stroke ›› 2024, Vol. 19 ›› Issue (10): 1205-1214.DOI: 10.3969/j.issn.1673-5765.2024.10.014
Previous Articles Next Articles
JU Jiajun, WANG Xinxin, HANG Lihua
Received:
2023-12-18
Online:
2024-10-20
Published:
2024-10-20
Contact:
HANG Lihua, E-mail: zjhanglihua@foxmail.com
鞠佳俊,王心心,杭黎华
通讯作者:
杭黎华 zjhanglihua@foxmail.com
基金资助:
CLC Number:
JU Jiajun, WANG Xinxin, HANG Lihua. Research Progress on the Correlation between Neuroinflammation and Brain Iron Metabolism after Intracerebral Hemorrhage[J]. Chinese Journal of Stroke, 2024, 19(10): 1205-1214.
鞠佳俊, 王心心, 杭黎华. 脑出血后神经炎症与脑铁代谢的相关性研究进展[J]. 中国卒中杂志, 2024, 19(10): 1205-1214.
[1] BRODERICK J P,GROTTA J C,NAIDECH A M,et al. The story of intracerebral hemorrhage:from recalcitrant to treatable disease[J]. Stroke,2021,52(5):1905-1914. [2] TSCHOE C,BUSHNELL C D,DUNCAN P W,et al. Neuroinflammation after intracerebral hemorrhage and potential therapeutic targets[J]. J Stroke,2020,22(1):29-46. [3] SUN Y Y,LI Q,GUO H X,et al. Ferroptosis and iron metabolism after intracerebral hemorrhage[J/OL]. Cells,2022,12(1):90[2023-12-01]. https://doi.org/10.3390/cells12010090. [4] TANG S C,GAO P,CHEN H M,et al. The role of iron,its metabolism and ferroptosis in traumatic brain injury [J/OL]. Front Cell Neurosci,2020,14:590789[2023-12-01]. https://doi.org/10.3389/fncel.2020.590789. [5] WEI Y F,SONG X X,GAO Y,et al. Iron toxicity in intracerebral hemorrhage:physiopathological and therapeutic implications[J/OL]. Brain Res Bull,2022,178:144-154[2023-12-01]. https://doi.org/10.1016/j. brainresbull.2021.11.014. [6] ZHANG W Q,WU Q Y,HAO S L,et al. The hallmark and crosstalk of immune cells after intracerebral hemorrhage:immunotherapy perspectives[J/OL]. Front Neurosci,2023,16:1117999[2023-12-01]. https://doi.org/10.3389/fnins.2022.1117999. [7] ZAMORANO M,OLSON S D,HAASE C,et al. Innate immune activation and white matter injury in a rat model of neonatal intraventricular hemorrhage are dependent on developmental stage[J/OL]. Exp Neurol,2023,367:114472[2023-12-01]. https://doi.org/10.1016/j. expneurol.2023.114472. [8] LIN J,XU Y,GUO P W,et al. CCL5/CCR5-mediated peripheral inflammation exacerbates blood-brain barrier disruption after intracerebral hemorrhage in mice [J/OL]. J Transl Med,2023,21(1):196[2023-12-01]. https://doi.org/10.1186/s12967-023-04044-3. [9] BAUTISTA W,ADELSON P D,BICHER N,et al. Secondary mechanisms of injury and viable pathophysiological targets in intracerebral hemorrhage[J/OL]. Ther Adv Neurol Disord,2021,14:17562864211049208[2023-12-01]. https://doi.org/10.1177/17562864211049208. [10] YE F H,GARTON H J L,HUA Y,et al. The role of thrombin in brain injury after hemorrhagic and ischemic stroke[J]. Transl Stroke Res,2021,12(3):496-511. [11] GÓMEZ MORILLAS A,BESSON V C,LEROUET D. Microglia and neuroinflammation:what place for P2RY12?[J/OL]. Int J Mol Sci,2021,22(4):1636[2023-12-01]. https://doi.org/10.3390/ijms22041636. [12] ZHANG W,TIAN T,GONG S X,et al. Microglia-associated neuroinflammation is a potential therapeutic target for ischemic stroke[J]. Neural Regen Res,2021,16(1):6-11. [13] MEI S H,SHAO Y J,FANG Y J,et al. The changes of leukocytes in brain and blood after intracerebral hemorrhage[J/OL]. Front Immunol,2021,12:617163[2023-12-01]. https://doi.org/10.3389/fimmu.2021.617163. [14] LI Z G,LI M S,SHI S X,et al. Brain transforms natural killer cells that exacerbate brain edema after intracerebral hemorrhage[J/OL]. J Exp Med,2020,217(12):e20200213[2023-12-01]. https://doi.org/10.1084/jem.20200213. [15] ZHU H M,WANG Z Q,YU J X,et al. Role and mechanisms of cytokines in the secondary brain injury after intracerebral hemorrhage[J/OL]. Prog Neurobiol,2019,178:101610[2023-12-01]. https://doi.org/10.1016/j.pneurobio.2019.03.003. [16] ZEIDAN R S,HAN S M,LEEUWENBURGH C,et al. Iron homeostasis and organismal aging[J/OL]. Ageing Res Rev,2021,72:101510[2023-12-01]. https://doi.org/10.1016/j.arr.2021.101510. [17] MEANS R T. Iron deficiency and iron deficiency anemia:implications and impact in pregnancy,fetal development,and early childhood parameters[J/OL]. Nutrients,2020,12(2):447[2023-12-01]. https://doi.org/10.3390/nu12020447. [18] CAMASCHELLA C,NAI A,SILVESTRI L. Iron metabolism and iron disorders revisited in the hepcidin era[J]. Haematologica,2020,105(2):260-272. [19] PIPERNO A,PELUCCHI S,MARIANI R. Inherited iron overload disorders[J/OL]. Transl Gastroenterol Hepatol,2020,5:25[2023-12-01]. https://doi.org/10.21037/tgh.2019.11.15. [20] FERREIRA A,NEVES P,GOZZELINO R. Multilevel impacts of iron in the brain:the cross talk between neurophysiological mechanisms,cognition,and social behavior[J/OL]. Pharmaceuticals(Basel),2019,12(3):126[2023-12-01]. https://doi.org/10.3390/ph12030126. [21] SCIMEMI A. Astrocytes and the warning signs of intracerebral hemorrhagic stroke[J/OL]. Neural Plast,2018,2018:7301623[2023-12-01]. https://doi.org/10.1155/2018/7301623. [22] PIVINA L,SEMENOVA Y,DOŞA M D,et al. Iron deficiency,cognitive functions,and neurobehavioral disorders in children[J]. J Mol Neurosci,2019,68(1):1-10. [23] KIM Y,CONNOR J R. The roles of iron and HFE genotype in neurological diseases[J/OL]. Mol Aspects Med,2020,75:100867[2023-12-01]. https://doi.org/10.1016/j.mam.2020.100867. [24] GONG Y,ZHANG G G,LI B,et al. BMAL1 attenuates intracerebral hemorrhage-induced secondary brain injury in rats by regulating the Nrf2 signaling pathway[J/OL]. Ann Transl Med,2021,9(21):1617[2023-12-01]. https://doi.org/10.21037/atm-21-1863. [25] DAI S H,HUA Y,KEEP R F,et al. Minocycline attenuates brain injury and iron overload after intracerebral hemorrhage in aged female rats[J/OL]. Neurobiol Dis,2019,126:76-84[2023-12-01]. https://doi.org/10.1016/j.nbd.2018.06.001. [26] DANG G,YANG Y F,WU G,et al. Early erythrolysis in the hematoma after experimental intracerebral hemorrhage[J]. Transl Stroke Res,2017,8(2):174-182. [27] DA SILVA S M,CAMPOS G D,GOMES F C A,et al. Radial glia-endothelial cells’ bidirectional interactions control vascular maturation and astrocyte differentiation:impact for blood-brain barrier formation[J]. Curr Neurovasc Res,2019,16(4):291-300. [28] SPENCE H,MCNEIL C J,WAITER G D. The impact of brain iron accumulation on cognition:a systematic review[J/OL]. PLoS One,2020,15(10):e0240697[2023-12-01]. https://doi.org/10.1371/journal.pone.0240697. [29] BHASIN R R,XI G,HUA Y,et al. Experimental intracerebral hemorrhage:effect of lysed erythrocytes on brain edema and blood-brain barrier permeability[J/OL]. Acta Neurochir Suppl,2002,81:249-251[2023-12-01]. https://doi.org/10.1007/978-3-7091-6738-0_65. [30] CHEN S P,LI L Z,PENG C,et al. Targeting oxidative stress and inflammatory response for blood-brain barrier protection in intracerebral hemorrhage[J]. Antioxid Redox Signal,2022,37(1/3):115-134. [31] LEE J,HYUN D H. The interplay between intracellular iron homeostasis and neuroinflammation in neurodegenerative diseases[J/OL]. Antioxidants(Basel),2023,12(4):918[2023-12-01]. https://doi.org/10.3390/antiox12040918. [32] PLAYS M,MÜLLER S,RODRIGUEZ R. Chemistry and biology of ferritin[J/OL]. Metallomics,2021,13(5):mfab021[2023-12-01]. https://doi.org/10.1093/mtomcs/mfab021. [33] FILLEBEEN C,CHARLEBOIS E,WAGNER J,et al. Transferrin receptor 1 controls systemic iron homeostasis by fine-tuning hepcidin expression to hepatocellular iron load[J]. Blood,2019,133(4):344-355. [34] HOLBEIN B E,LEHMANN C. Dysregulated iron homeostasis as common disease etiology and promising therapeutic target[J/OL]. Antioxidants(Basel),2023,12(3):671[2023-12-01]. https://doi.org/10.3390/antiox12030671. [35] 曾劲松,李弘,廖君,等. 脑泰方对脑出血急性期大鼠脑铁代谢的干预作用及神经保护机制[J]. 中医药导报,2020,26(11):27-32. ZENG J S,LI H,LIAO J,et al. Effect of naotaifang on cerebral iron metabolism and its neuroprotective mechanism in rats with acute intracerebral hemorrhage[J]. Guid J Tradit Chin Med Pharm,2020,26(11):27-32. [36] 孙玙,杨水泉,胡朝晖,等. 血清铁调素及铁代谢指标与脑出血早期病情及预后的相关性研究[J]. 中国临床解剖学杂志,2021,39(3):355-358,362. SUN Y,YANG S Q,HU Z H,et al. Research on the serum hepcidin and iron metabolism indicator in intracerebral hemorrhage and its application in assessment of early conditions and prognosis[J]. Chinese Journal of Clinical Anatomy,2021,39(3):355-358,362. [37] WARD R J,DEXTER D T,CRICHTON R R. Iron,neuroinflammation and neurodegeneration[J/OL]. Int J Mol Sci,2022,23(13):7267[2023-12-01]. https://doi.org/10.3390/ijms23137267. [38] WEN H M,TAN J Y,TIAN M,et al. TGF-β1 ameliorates BBB injury and improves long-term outcomes in mice after ICH[J/OL]. Biochem Biophys Res Commun,2023,654:136-144[2023-12-01]. https://doi.org/10.1016/j.bbrc.2023.03.007. [39] JIN J,DUAN J,DU L Y,et al. Inflammation and immune cell abnormalities in intracranial aneurysm subarachnoid hemorrhage(SAH):relevant signaling pathways and therapeutic strategies[J/OL]. Front Immunol,2022,13:1027756[2023-12-01]. https://doi.org/10.3389/fimmu.2022.1027756. [40] POPIOLEK-BARCZYK K,MIKA J. Targeting the microglial signaling pathways:new insights in the modulation of neuropathic pain[J]. Curr Med Chem,2016,23(26):2908-2928. [41] GAO G F,YOU L H,ZHANG J H,et al. Brain iron metabolism,redox balance and neurological diseases [J/OL]. Antioxidants(Basel),2023,12(6):1289 [2023-12-01]. https://doi.org/10.3390/antiox12061289. [42] URRUTIA P J,BÓRQUEZ D A,NÚÑEZ M T. Inflaming the brain with iron[J/OL]. Antioxidants(Basel),2021,10(1):61[2023-12-01]. https://doi.org/10.3390/antiox10010061. [43] GONZÁLEZ D A S,CHELI V T,WAN R S,et al. Iron metabolism in the peripheral nervous system:the role of DMT1,ferritin,and transferrin receptor in schwann cell maturation and myelination[J]. J Neurosci,2019,39(50):9940-9953. [44] BRUNO K,WOLLER S A,MILLER Y I,et al. Targeting Toll-like receptor-4(TLR4)—an emerging therapeutic target for persistent pain states[J]. Pain,2018,159(10):1908-1915. [45] KARUPPAGOUNDER V,GIRIDHARAN V V,ARUMUGAM S,et al. Modulation of macrophage polarization and HMGB1-TLR2/TLR4 cascade plays a crucial role for cardiac remodeling in senescence-accelerated prone mice[J/OL]. PLoS One,2016,11(4):e0152922[2023-12-01]. https://doi.org/10.1371/journal.pone.0152922. [46] XIONG X Y,LIU L,WANG F X,et al. Toll-like receptor 4/MyD88-mediated signaling of hepcidin expression causing brain iron accumulation,oxidative injury,and cognitive impairment after intracerebral hemorrhage[J]. Circulation,2016,134(14):1025-1038. [47] URRUTIA P J,BÓRQUEZ D A,NÚÑEZ M T. Inflaming the brain with iron[J/OL]. Antioxidants(Basel),2021,10(1):61[2023-12-01]. https://doi.org/10.3390/antiox10010061. [48] KAO J K,WANG S C,HO L W,et al. M2-like polarization of THP-1 monocyte-derived macrophages under chronic iron overload[J]. Ann Hematol,2020,99(3):431-441. [49] YU H Y,CHANG Q,SUN T,et al. Metabolic reprogramming and polarization of microglia in Parkinson’s disease:role of inflammasome and iron[J/OL]. Ageing Res Rev,2023,90:102032[2023-12-01]. https://doi.org/10.1016/j.arr.2023.102032. [50] DICKSON K B,ZHOU J. Role of reactive oxygen species and iron in host defense against infection[J]. Front Biosci(Landmark Ed),2020,25(8):1600-1616. [51] SCHIPPER H M,SONG W,TAVITIAN A,et al. The sinister face of heme oxygenase-1 in brain aging and disease[J/OL]. Prog Neurobiol,2019,172:40-70[2023-12-01]. https://doi.org/10.1016/j.pneurobio.2018.06.008. [52] FERNÁNDEZ-MENDÍVIL C,LUENGO E,TRIGO-ALONSO P,et al. Protective role of microglial HO-1 blockade in aging:implication of iron metabolism [J/OL]. Redox Biol,2021,38:101789[2023-12-01]. https://doi.org/10.1016/j.redox.2020.101789. [53] XIE Q,GU Y X,HUA Y,et al. Deferoxamine attenuates white matter injury in a piglet intracerebral hemorrhage model[J]. Stroke,2014,45(1):290-292. [54] FARR A C,XIONG M P. Challenges and opportunities of deferoxamine delivery for treatment of Alzheimer’s disease,Parkinson’s disease,and intracerebral hemorrhage[J]. Mol Pharm,2021,18(2):593-609. [55] SIRACUSA R,FUSCO R,CUZZOCREA S. Astrocytes:role and functions in brain pathologies[J/OL]. Front Pharmacol,2019,10:1114[2023-12-01]. https://doi.org/10.3389/fphar.2019.01114. [56] LIDDELOW S A,GUTTENPLAN K A,CLARKE L E,et al. Neurotoxic reactive astrocytes are induced by activated microglia[J]. Nature,2017,541(7638):481-487. [57] JUNG J E,SUN G H,BAUTISTA GARRIDO J,et al. The mitochondria-derived peptide humanin improves recovery from intracerebral hemorrhage:implication of mitochondria transfer and microglia phenotype change[J]. J Neurosci,2020,40(10):2154-2165. [58] DENG S W. AQP2 promotes astrocyte activation by modulating the TLR4/NFκB-p65 pathway following intracerebral hemorrhage[J/OL]. Front Immunol,2022,13:847360[2023-12-01]. https://doi.org/10.3389/fimmu.2022.847360. [59] LAWRENCE J M,SCHARDIEN K,WIGDAHL B,et al. Roles of neuropathology-associated reactive astrocytes:a systematic review[J/OL]. Acta Neuropathol Commun,2023,11(1):42[2023-12-01]. https://doi.org/10.1186/s40478-023-01526-9. [60] DÍAZ-CASTRO B,ROBEL S,MISHRA A. Astrocyte endfeet in brain function and pathology:open questions[J/OL]. Annu Rev Neurosci,2023,46:101-121[2023-12-01]. https://doi.org/10.1146/annurev-neuro-091922-031205. [61] DEKENS D W,DE DEYN P P,SAP F,et al. Iron chelators inhibit amyloid-β-induced production of lipocalin 2 in cultured astrocytes[J/OL]. Neurochem Int,2020,132:104607[2023-12-01]. https://doi.org/10.1016/j.neuint.2019.104607. [62] TACCOLA C,BARNEOUD P,CARTOT-COTTON S,et al. Modifications of physical and functional integrity of the blood-brain barrier in an inducible mouse model of neurodegeneration[J/OL]. Neuropharmacology,2021,191:108588[2023-12-01]. https://doi.org/10.1016/j.neuropharm.2021.108588. [63] RYAN F,ZARRUK J G,LÖßLEIN L,et al. Ceruloplasmin plays a neuroprotective role in cerebral ischemia[J/OL]. Front Neurosci,2019,12:988[2023-12-01]. https://doi.org/10.3389/fnins.2018.00988. [64] YOU L H,YU P P,DONG T Y,et al. Astrocyte-derived hepcidin controls iron traffic at the blood-brain-barrier via regulating ferroportin 1 of microvascular endothelial cells[J/OL]. Cell Death Dis,2022,13(8):667[2023-12-01]. https://doi.org/10.1038/s41419-022-05043-w. [65] CHELI V T,CORREALE J,PAEZ P M,et al. Iron metabolism in oligodendrocytes and astrocytes,implications for myelination and remyelination[J/OL]. ASN Neuro,2020,12:1759091420962681[2023-12-01]. https://doi.org/10.1177/1759091420962681. [66] ZHUO F,QIU G P,XU J,et al. Both endoplasmic reticulum and mitochondrial pathways are involved in oligodendrocyte apoptosis induced by capsular hemorrhage[J/OL]. Mol Cell Neurosci,2016,72:64-71[2023-12-01]. https://doi.org/10.1016/j.mcn.2016.01.009. [67] FU X J,ZHOU G Y,ZHUANG J F,et al. White matter injury after intracerebral hemorrhage[J/OL]. Front Neurol,2021,12:562090[2023-12-01]. https://doi.org/10.3389/fneur.2021.562090. [68] LI J,XIAO L L,HE D,et al. Mechanism of white matter injury and promising therapeutic strategies of MSCs after intracerebral hemorrhage[J/OL]. Front Aging Neurosci,2021,13:632054[2023-12-01]. https://doi.org/10.3389/fnagi.2021.632054. [69] IMAI T,MATSUBARA H,HARA H. Potential therapeutic effects of Nrf2 activators on intracranial hemorrhage[J]. J Cereb Blood Flow Metab,2021,41(7):1483-1500. [70] NOBUTA H,YANG N,NG Y H,et al. Oligodendrocyte death in Pelizaeus-Merzbacher disease is rescued by iron chelation[J/OL]. Cell Stem Cell,2019,25(4):531-541,e6[2023-12-01]. https://doi.org/10.1016/j.stem.2019.09.003. |
[1] |
LI Yangyang, FANG Jian, WANG Xiaoxue.
Effects of Honokiol on Neurological Injury and Cognitive Function in Mice with Intracerebral Hemorrhage by Regulating BDNF-TrkB-CREB Signaling Pathway [J]. Chinese Journal of Stroke, 2024, 19(9): 1048-1057. |
[2] |
LI Yuerong, QIN Xiude, DANG Zhaohui, LU Yunwei, CAI Tiantian, CAI Haobin, BU Fan.
Research Progress of Microglia on Mediating Central Post-Stroke Pain [J]. Chinese Journal of Stroke, 2024, 19(8): 967-972. |
[3] | ZHAO Yan, YAO Jingxin, PENG Yuming. A Report of Simultaneous Complications of Ischemic Stroke and Intracerebral Hemorrhage in Geriatric Patients Undergoing Craniotomy for Tumor Resections during the Perioperative Period [J]. Chinese Journal of Stroke, 2024, 19(7): 797-802. |
[4] | LI Zhiming, WANG Zijie, LI Qi. Interpretation of the American Stroke Association Code ICH Expert Consensus Statement [J]. Chinese Journal of Stroke, 2024, 19(6): 714-724. |
[5] | LI Chenhong, JIANG Chenli, WANG Jinhui, HUANG Sheng. Analysis of Influencing Factors and Construction of Prediction Models for Pulmonary Infection after Minimally Invasive Intracranial Hematoma Removal in Patients with Intracerebral Hemorrhage [J]. Chinese Journal of Stroke, 2024, 19(5): 532-538. |
[6] | DING Zeyu, JI Zeqiang, WU Jianwei, KANG Kaijiang, ZHAO Xingquan. Risk Factors of Early Neurological Deterioration of Patients after Minimally Invasive Surgery in Supratentorial Hypertensive Intracerebral Hemorrhage [J]. Chinese Journal of Stroke, 2024, 19(5): 545-551. |
[7] | ZHANG Qing, WANG Xu, ZHANG Qing. A Case Report of “Heart” Shaped Primary Medullary Hemorrhage [J]. Chinese Journal of Stroke, 2024, 19(2): 197-201. |
[8] | LI Dayu, GUO Shaolei, ZHANG Bo, HUANG Zhipeng, YE Weiwei, YAO Liang. Effects of Penehyclidine Hydrochloride on the Blood-Brain Barrier and ROCK2, CLDN5, and AQP-4 Expression of Brain Tissue in Rats with Intracerebral Hemorrhage [J]. Chinese Journal of Stroke, 2024, 19(10): 1180-1187. |
[9] | The Cerebrovascular Disease Working Group of National Center for Healthcare Quality Management in Neurological Diseases. Medical Quality Control Indicators for Intracerebral Hemorrhage [J]. Chinese Journal of Stroke, 2024, 19(1): 44-49. |
[10] | WANG Jing, LI Zixiao, DONG Qiang, ZHAO Xingquan. Interpretation of Medical Quality Control Indicators for Intracerebral Hemorrhage [J]. Chinese Journal of Stroke, 2024, 19(1): 50-54. |
[11] | YANG Jiaxin, HE Chunyu, LIU Lei, CHEN Wenbo, XIE Yan. Prediction Models of Symptomatic Intracerebral Hemorrhage after Intravenous Thrombolysis in Acute Ischemic Stroke: A Systematic Review [J]. Chinese Journal of Stroke, 2024, 19(1): 76-86. |
[12] | ZHANG Qian, JI Ruijun, ZHAO Meng, WANG Wenjuan, LU Jingjing, LI Na, LIU Yanfang, BIAN Liheng, YU Songlin, LI Hao, ZHANG Qian, WU Jianwei, WANG Dandan, WANG Jing, LI Zhaoxia, JIANG Ruixuan, KANG Kaijiang, XUE Yimeng, YA Xiaolong, HE Qiheng, MO Shaohua, ZHAO Xingquan, ZHAO Jizong, the Writing Committee of Chinese Stroke Association Guidelines for Clinical Management of Cerebrovascular Diseases ( Contributed equally). Chinese Stroke Association Guidelines for Clinical Management of Cerebrovascular Diseases (Second Edition) (Excerpt) ——Chapter Five Clinical Management of Intracerebral Hemorrhage [J]. Chinese Journal of Stroke, 2023, 18(9): 1014-1023. |
[13] | FANG Xiaomeng, YUAN Qiaoling, WANG Shuo. Factors Related to the Deep Vein Thrombosis in Severe Spontaneous Intracerebral Hemorrhage Patients after Surgical Treatment [J]. Chinese Journal of Stroke, 2023, 18(8): 891-897. |
[14] | LI Guangshuo, ZHAO Xingquan. Interpretation of the Keypoints and Updates on National Clinical Guideline for Stroke for the United Kingdom and Ireland (Edition 2023) —Hemorrhagic Stroke [J]. Chinese Journal of Stroke, 2023, 18(12): 1365-1369. |
[15] | WU Na, WANG Liyuan, LI Guangshuo, XIONG Yunyun. Interpretation of the Keypoints and Updates on National Clinical Guideline for Stroke for the United Kingdom and Ireland (Edition 2023) —Long-Term Management and Secondary Prevention [J]. Chinese Journal of Stroke, 2023, 18(12): 1383-1390. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||