[1] MA Q F,LI R,WANG
L J,et al. Temporal trend and attributable risk factors
of stroke burden in China,1990–2019:an analysis for the global burden of disease study 2019[J/OL].
Lancet Public Health,2021,6(12):e897-e906[2022-01-18].
https://doi.org/10.1016/s2468-2667(21)00228-0.
[2] 《中国卒中报告》编写委员会.
中国卒中报告2020(中文版)(1)[J]. 中国卒中杂志,2022,17(5):433-447.
[3] WILLIAMS L S,ROTICH J,QI R,et al. Effects of admission
hyperglycemia on mortality and costs in acute ischemic stroke[J]. Neurology,2002,59(1):67-71.
[4] MATSUMOTO K,NOHARA Y,SOEJIMA H,et al. Stroke prognostic scores
and data-driven prediction of clinical outcomes after acute ischemic stroke[J].
Stroke,2020,51(5):1477-1483.
[5] RAJKOMAR A,DEAN J,KOHANE I. Machine learning in medicine[J]. N Engl J Med,2019,380(14):1347-1358.
[6] WANG Y J,JING J,MENG X,et al. The third China national
stroke registry(CNSR-Ⅲ)for
patients with acute ischaemic stroke or transient ischaemic attack:design,rationale and baseline patient
characteristics[J]. Stroke Vasc Neurol,2019,4(3):158-164.
[7] POLDRACK R A,HUCKINS G,VAROQUAUX G. Establishment of best practices for evidence for
prediction:a review[J]. JAMA psychiatry,2020,77(5):534-540.
[8] LIN W J,CHEN J J. Class-imbalanced
classifiers for high-dimensional data[J]. Brief Bioinform,2013,14(1):13-26.
[9] FRIEDMAN J H. Greedy function approximation:a gradient
boosting machine[J]. Annals of statistics,2001,29(5):1189-1232.
[10] ZHANG Z D,JUNG C. GBDT-MO:Gradient-boosted decision trees for multiple outputs[J]. IEEE T Neur
Net Lear,2020,32(7):3156-3167.
[11] CHEN T,GUESTRIN C. XGBoost:a scalable tree boosting system[C/OL]//KDD’16:Proceedings of the 22nd ACM SIGKDD International Conference on
Knowledge Discovery and Data Mining,2016,San Francisco,CA,USA.
New York:ACM[2022-01-18].
https://dl.acm.org/doi/pdf/10.1145/2939672.2939785.
[12] LUNDBERG S M,LEE S I. A unified approach
to interpreting model predictions[C/OL]//NIPS'17: Proceedings of the 31st
International Conference on Neural Information Processing Systems,2017,Long Beach,CA,USA[2022-01-18]. https://dl.acm.org/doi/pdf/10.5555/3295222.3295230.
[13] HEO J N,YOON J G,PARK H,et al. Machine learning-based model
for prediction of outcomes in acute stroke[J]. Stroke,2019,50(5):1263-1265.
[14] ADAMS H P,DAVIS P H,LEIRA E C,et al. Baseline NIH stroke scale
score strongly predicts outcome after stroke:a report
of the trial of org 10 172 in acute stroke treatment(TOAST)[J]. Neurology,1999,53(1):126-131.
[15] WEIMAR C,KONIG I R,KRAYWINKEL K,et al. Age and national
institutes of health stroke scale score within 6 hours after onset are accurate
predictors of outcome after cerebral ischemia:development
and external validation of prognostic models[J]. Stroke,2004,35(1):158-162.
[16] KOIKE T,KOIKE Y,YANG D,et al. Human apolipoprotein A-Ⅱ reduces atherosclerosis in knock-in rabbits[J/OL]. Atherosclerosis,2021,316:32-40[2022-01-18].
https://doi.org/10.1016/j.atherosclerosis.2020.11.028.
|