Chinese Journal of Stroke ›› 2022, Vol. 17 ›› Issue (11): 1189-1197.DOI: 10.3969/j.issn.1673-5765.2022.11.006
Previous Articles Next Articles
DENG Yuhan, LIU Shuang, WANG Ziyao, WANG Yuxin, LIU Baohua
Received:
2022-02-18
Online:
2022-11-20
Published:
2022-11-20
邓宇含, 刘爽, 王子尧, 汪雨欣, 刘宝花
通讯作者:
刘宝花 baohualiu@bjmu.edu.cn
基金资助:
DENG Yuhan, LIU Shuang, WANG Ziyao, WANG Yuxin, LIU Baohua. The Effect of Machine Learning Model for Predicting Stroke Risk in the General Population Based on Structured Data: A Systematic Review and Meta-Analysis[J]. Chinese Journal of Stroke, 2022, 17(11): 1189-1197.
邓宇含, 刘爽, 王子尧, 汪雨欣, 刘宝花. 基于结构化数据和机器学习模型预测普通人群卒中发病风险的系统评价和meta分析 [J]. 中国卒中杂志, 2022, 17(11): 1189-1197.
[1] KATAN M,LUFT A. Global burden of stroke[J]. Semin Neurol,2018,38(2):208-211. [2] ROCHMAH T N,RAHMAWATI I T,DAHLUI M,et al. Economic burden of stroke disease:a systematic review[J/OL]. Int J Environ Res Public Health,2021,18(14):7552[2022-02-02]. https://doi.org/10.3390/ijerph18147552. [3] FEIGIN V L,LAWES C M,BENNETT D A,et al. Worldwide stroke incidence and early case fatality reported in 56 population-based studies:a systematic review[J]. Lancet Neurol,2009,8(4):355-369. [4] BOOT E,EKKER M S,PUTAALA J,et al. Ischaemic stroke in young adults:a global perspective[J]. J Neurol Neurosurg Psychiatry,2020,91(4):411-417. [5] PANDIAN J D,GALL S L,KATE M P,et al. Prevention of stroke:a global perspective[J]. Lancet,2018,392(10154):1269-1278. [6] ESENWA C,GUTIERREZ J. Secondary stroke prevention:challenges and solutions[J/OL]. Vasc Health Risk Manag,2015,11:437-450[2022-02-02]. https://doi.org/10.2147/VHRM.S63791. [7] YAHYA T,JILANI M H,KHAN S U,et al. Stroke in young adults:current trends,opportunities for prevention and pathways forward[J/OL]. Am J Prev Cardiol,2020,3:100085[2022-02-02]. https://doi.org/10.1016/j.ajpc.2020.100085. [8] CHO S M,AUSTIN P C,ROSS H J,et al. Machine learning compared with conventional statistical models for predicting myocardial infarction readmission and mortality:a systematic review[J]. Can J Cardiol,2021,37(8):1207-1214. [9] SONG X,LIU X Y,LIU F,et al. Comparison of machine learning and logistic regression models in predicting acute kidney injury:a systematic review and meta-analysis[J/OL]. Int J Med Inform,2021,151:104484[2022-02-02]. https://doi.org/10.1016/j. ijmedinf.2021.104484. [10] KOUROU K,EXARCHOS T P,EXARCHOS K P,et al. Machine learning applications in cancer prognosis and prediction[J/OL]. Comput Struct Biotechnol J,2014,13:8-17[2022-02-02]. https://doi.org/10.1016/j.csbj.2014.11.005. [11] ARABASADI Z,ALIZADEHSANI R,ROSHANZAMIR M,et al. Computer aided decision making for heart disease detection using hybrid neural network-genetic algorithm[J/OL]. Comput Methods Programs Biomed,2017,141:19-26[2022-02-02]. https://doi.org/10.1016/j.cmpb.2017.01.004. [12] KAMAL H,LOPEZ V,SHETH S A. Machine learning in acute ischemic stroke neuroimaging[J/OL]. Front Neurol,2018,9:945[2022-02-02]. https://doi.org/10.3389/fneur.2018.00945. [13] LEE E J,KIM Y H,KIM N,et al. Deep into the brain:artificial intelligence in stroke imaging[J]. J Stroke,2017,19(3):277–285. [14] WANG W,KIIK M,PEEK N,et al. A systematic review of machine learning models for predicting outcomes of stroke with structured data[J/OL]. PLoS One,2020,15(6):e0234722[2022-02-02]. https://doi.org/10.1371/journal.pone.0234722. [15] MOHER D,LIBERATI A,TETZLAFF J,et al. Preferred reporting items for systematic reviews and meta-analyses:the PRISMA statement[J/OL]. PLoS Med,2009,6(7):e1000097[2022-02-02]. https://doi.org/10.1371/journal.pmed.1000097. [16] DENG Y H,LIU S,QIN W. Machine learning for prediction of stroke in community settings with structured data:a systematic review and meta-analysis[EB/OL]. (2021-07-27)[2022-02-02]. https://www.crd.york.ac.uk/PROSPERO/display_record.php?RecordID=264406. [17] MOONS K G,DE GROOT J A,BOUWMEESTER W,et al. Critical appraisal and data extraction for systematic reviews of prediction modelling studies:the CHARMS checklist[J/OL]. PLoS Med,2014,11(10):e1001744[2022-02-02]. https://doi.org/10.1371/journal.pmed.1001744. [18] WOLFF R F,MOONS K G M,RILEY R D,et al. PROBAST:a tool to assess the risk of bias and applicability of prediction model studies[J]. Ann Intern Med,2019,170(1):51-58. [19] NEWCOMBE R G. Confidence intervals for an effect size measure based on the Mann-Whitney statistic. Part 2:asymptotic methods and evaluation[J]. Stat Med,2006,25(4):559-573. [20] HANLEY J A,MCNEIL B J. The meaning and use of the area under a receiver operating characteristic(ROC)curve[J]. Radiology,1982,143(1):29-36. [21] PEÑAFIEL S,BALOIAN N,SANSON H,et al. Predicting stroke risk with an interpretable classifier[J/OL]. IEEE Access,2021,9:1154-1166[2022-02-02]. https://doi.org/10.1109/ACCESS.2020.3047195. [22] CHEN J,CHEN Y R,LI J Q,et al. Stroke risk prediction with hybrid deep transfer learning framework[J]. IEEE J Biomed Health Inform,2022,26(1):411-422. [23] YAO Q,ZHANG J,YAN K,et al. Development and validation of a 2-year new-onset stroke risk prediction model for people over age 45 in China[J/OL]. Medicine(Baltimore),2020,99(41):e22680[2022-02-02]. https://doi.org/10.1097/MD.0000000000022680. [24] WU Y F,FANG Y. Stroke prediction with machine learning methods among older Chinese[J/OL]. Int J Environ Res Public Health,2020,17(6):1828[2022-02-02]. https://doi.org/10.3390/ijerph17061828. [25] HUNG C Y,LIN C H,LAN T H,et al. Development of an intelligent decision support system for ischemic stroke risk assessment in a population-based electronic health record database[J/OL]. PLoS One,2019,14(3):e0213007[2022-02-02]. https://doi.org/10.1371/journal.pone.0213007. [26] ZHANG Y L,SONG W,FU L. Feature selection for risk detection of strokes:a 5-year longitudinal study[C]. Kunming:2017 9th International Conference on Modelling,Identification and Control(ICMIC),2017. [27] TEOH D. Towards stroke prediction using electronic health records[J/OL]. BMC Med Inform Decis Mak,2018,18:127[2022-02-02]. http://dx.doi.org/10.1186/s12911-018-0702-y. [28] MIN S N,PARK S J,KIM D J,et al. Development of an algorithm for stroke prediction:a national health insurance database study in Korea[J]. Eur Neurol,2018,79(3/4):214-220. [29] HUNG C Y,LIN C H,LEE C C. Improving young stroke prediction by learning with active data augmenter in a large-scale electronic medical claims database[J/OL]. Annu Int Conf IEEE Eng Med Biol Soc,2018,2018:5362-5365[2022-02-02]. https://doi.org/10.1109/EMBC.2018.8513479. [30] KHOSLA A,CAO Y,LIN C Y,et al. An integrated machine learning approach to stroke prediction[C]. Washington:Acm Sigkdd International Conference on Knowledge Discovery & Data Mining,2010. [31] CHEN P C,CHIEN K L,HSU H C,et al. Metabolic syndrome and C-reactive protein in stroke prediction:a prospective study in Taiwan[J]. Metabolism,2009,58(6):772-778. [32] DEO R C. Machine learning in medicine[J]. Circulation,2015,132(20):1920-1930. [33] LI Y,SPERRIN M,ASHCROFT D M,et al. Consistency of variety of machine learning and statistical models in predicting clinical risks of individual patients:longitudinal cohort study using cardiovascular disease as exemplar[J/OL]. BMJ,2020,371:m3919[2022-02-02]. https://doi.org/10.1136/bmj.m3919. [34] TU J V. Advantages and disadvantages of using artificial neural networks versus logistic regression for predicting medical outcomes[J]. J Clin Epidemiol,1996,49(11):1225-1231. [35] CAPISTRANT B D,WANG Q,LIU S Y,et al. Stroke-associated differences in rates of activity of daily living loss emerge years before stroke onset[J]. J Am Geriatr Soc,2013,61(6):931-938. [36] GREGÓRIO T,PIPA S,CAVALEIRO P,et al. Prognostic models for intracerebral hemorrhage:systematic review and meta-analysis[J/OL]. BMC Med Res Methodol,2018,18(1):145[2022-02-02]. https://doi.org/10.1186/s12874-018-0613-8. [37] FLEUREN L M,KLAUSCH T L T,ZWAGER C L,et al. Machine learning for the prediction of sepsis:a systematic review and meta-analysis of diagnostic test accuracy[J]. Intensive Care Med,2020,46(3):383-400. [38] ANDAUR NAVARRO C L,DAMEN J A A G,TAKADA T,et al. Protocol for a systematic review on the methodological and reporting quality of prediction model studies using machine learning techniques[J/OL]. BMJ Open,2020,10(11):e038832[2022-02-02]. https://doi.org/10.1136/bmjopen-2020-038832. [39] LINARDATOS P,PAPASTEFANOPOULOS V,KOTSIANTIS S. Explainable AI:a review of machine learning interpretability methods[J/OL]. Entropy(Basel),2020,23(1):18[2022-02-02]. https://doi.org/10.3390/e23010018. [40] MOONS K G,ALTMAN D G,REITSMA J B,et al. Transparent reporting of a multivariable prediction model for individual prognosis or diagnosis(TRIPOD):explanation and elaboration[J/OL]. Ann Intern Med,2015,162(1):W1-W73[2022-02-02]. https://doi.org/10.7326/M14-0698. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||