Chinese Journal of Stroke ›› 2025, Vol. 20 ›› Issue (6): 699-709.DOI: 10.3969/j.issn.1673-5765.2025.06.005
Previous Articles Next Articles
FAN Zhe1, JIANG Minghui2,3, CHENG Si2,3,4, LIU Siyang1
Received:
2025-05-25
Online:
2025-06-20
Published:
2025-06-20
Contact:
CHENG Si, E-mail: sicheng@ncrcnd.org.cn
LIU Siyang, E-mail: liusy99@mail.sysu.edu.cn
樊哲1,姜明慧2,3,程丝2,3,4,刘斯洋1
通讯作者:
程丝 sicheng@ncrcnd.org.cn
刘斯洋 liusy99@mail.sysu.edu.cn
基金资助:
CLC Number:
FAN Zhe, JIANG Minghui, CHENG Si, LIU Siyang. Drug-Target Mendelian Randomization Based on Multi-omics Data and Its Application in the Prevention and Treatment of Cardiovascular and Cerebrovascular Diseases[J]. Chinese Journal of Stroke, 2025, 20(6): 699-709.
樊哲, 姜明慧, 程丝, 刘斯洋. 基于多组学数据的药物靶点孟德尔随机化及其在心脑血管疾病防治研究中的应用[J]. 中国卒中杂志, 2025, 20(6): 699-709.
[1] GBD 2021 Causes of Death Collaborators. Global burden of 288 causes of death and life expectancy decomposition in 204 countries and territories and 811 subnational locations,1990—2021:a systematic analysis for the global burden of disease study 2021[J]. Lancet,2024,403(10440):2100-2132. [2] MENSAH G A,ROTH G A,FUSTER V. The global burden of cardiovascular diseases and risk factors:2020 and beyond[J]. J Am Coll Cardiol,2019,74(20):2529-2532. [3] KHERA A V,KATHIRESAN S. Genetics of coronary artery disease:discovery,biology and clinical translation[J]. Nat Rev Genet,2017,18(6):331-344. [4] GBD 2021 Diseases and Injuries Collaborators. Global incidence,prevalence,years lived with disability(YLDs),disability-adjusted life-years(DALYs),and healthy life expectancy(HALE)for 371 diseases and injuries in 204 countries and territories and 811 subnational locations,1990—2021:a systematic analysis for the global burden of disease study 2021[J]. Lancet,2024,403(10440):2133-2161. [5] DOWDEN H,MUNRO J. Trends in clinical success rates and therapeutic focus[J]. Nat Rev Drug Discov,2019,18(7):495-496. [6] ALTERI E,GUIZZARO L. Be open about drug failures to speed up research[J]. Nature,2018,563(7731):317-319. [7] DAGHLAS I,GILL D. Mendelian randomization as a tool to inform drug development using human genetics[J/OL]. Camb Prisms Precis Med,2023,1:e16[2025-05-29]. https://doi.org/10.1017/pcm.2023.5. [8] PLENGE R M,SCOLNICK E M,ALTSHULER D. Validating therapeutic targets through human genetics[J]. Nat Rev Drug Discov,2013,12(8):581-594. [9] THANASSOULIS G,O’DONNELL C J. Mendelian randomization:nature’s randomized trial in the post-genome era?[J]. JAMA,2009,301(22):2386-2388. [10] SMITH G D,EBRAHIM S.‘Mendelian randomization’:can genetic epidemiology contribute to understanding environmental determinants of disease?[J]. Int J Epidemiol,2003,32(1):1-22. [11] KING E A,DAVIS J W,DEGNER J F. Are drug targets with genetic support twice as likely to be approved?Revised estimates of the impact of genetic support for drug mechanisms on the probability of drug approval[J/OL]. PLoS Genet,2019,15(12):e1008489[2025-05-29]. https://doi.org/10.1371/journal.pgen.1008489. [12] NELSON M R,TIPNEY H,PAINTER J L,et al. The support of human genetic evidence for approved drug indications[J]. Nat Genet,2015,47(8):856-860. [13] THOMAS D C,CONTI D V. Commentary:the concept of‘Mendelian randomization’[J]. Int J Epidemiol,2004,33(1):21-25. [14] HARBORD R M,DIDELEZ V,PALMER T M,et al. Severity of bias of a simple estimator of the causal odds ratio in Mendelian randomization studies[J]. Stat Med,2013,32(7):1246-1258. [15] BURGESS S,BUTTERWORTH A,THOMPSON S G. Mendelian randomization analysis with multiple genetic variants using summarized data[J]. Genet Epidemiol,2013,37(7):658-665. [16] SANDERSON E,GLYMOUR M M,HOLMES M V,et al. Mendelian randomization[J/OL]. Nat Rev Methods Primers,2022,2:6[2025-05-29]. https://doi.org/10.1038/s43586-021-00092-5. [17] HOLMES M V,RICHARDSON T G,FERENCE B A,et al. Integrating genomics with biomarkers and therapeutic targets to invigorate cardiovascular drug development[J]. Nat Rev Cardiol,2021,18(6):435-453. [18] SAID S,PAZOKI R,KARHUNEN V,et al. Genetic analysis of over half a million people characterises C-reactive protein loci[J/OL]. Nat Commun,2022,13(1):2198[2025-05-29]. https://doi.org/10.1038/s41467-022-29650-5. [19] SWERDLOW D I,KUCHENBAECKER K B,SHAH S,et al. Selecting instruments for Mendelian randomization in the wake of genome-wide association studies[J]. Int J Epidemiol,2016,45(5):1600-1616. [20] PIETZNER M,WHEELER E,CARRASCO-ZANINI J,et al. Mapping the proteo-genomic convergence of human diseases[J/OL]. Science,2021,374(6569):eabj1541[2025-05-29]. https://doi.org/10.1126/science.abj1541. [21] BURGESS S,MASON A M,GRANT A J,et al. Using genetic association data to guide drug discovery and development:review of methods and applications[J]. Am J Hum Genet,2023,110(2):195-214. [22] HORMOZDIARI F,VAN DE BUNT M,SEGRÈ A V,et al. Colocalization of GWAS and eQTL signals detects target genes[J]. Am J Hum Genet,2016,99(6):1245-1260. [23] GIAMBARTOLOMEI C,VUKCEVIC D,SCHADT E E,et al. Bayesian test for colocalisation between pairs of genetic association studies using summary statistics[J/OL]. PLoS Genet,2014,10(5):e1004383[2025-05-29]. https://doi.org/10.1371/journal.pgen.1004383. [24] ZUBER V,GRINBERG N F,GILL D,et al. Combining evidence from Mendelian randomization and colocalization:review and comparison of approaches[J]. Am J Hum Genet,2022,109(5):767-782. [25] FRIEDEN T R. Evidence for health decision making—beyond randomized,controlled trials[J]. N Engl J Med,2017,377(5):465-475. [26] TSANG R,COLLEY L,LYND L D. Inadequate statistical power to detect clinically significant differences in adverse event rates in randomized controlled trials[J]. J Clin Epidemiol,2009,62(6):609-616. [27] ZHENG J,HABERLAND V,BAIRD D,et al. Phenome-wide Mendelian randomization mapping the influence of the plasma proteome on complex diseases[J]. Nat Genet,2020,52(10):1122-1131. [28] DENNY J C,RITCHIE M D,BASFORD M A,et al. PheWAS:demonstrating the feasibility of a phenome-wide scan to discover gene-disease associations[J]. Bioinformatics,2010,26(9):1205-1210. [29] MILLARD L A C,DAVIES N M,TILLING K,et al. Searching for the causal effects of body mass index in over 300 000 participants in UK biobank,using Mendelian randomization[J/OL]. PLoS Genet,2019,15(2):e1007951[2025-05-29]. https://doi.org/10.1371/journal.pgen.1007951. [30] BURGESS S,THOMPSON S G. Multivariable Mendelian randomization:the use of pleiotropic genetic variants to estimate causal effects[J]. Am J Epidemiol,2015,181(4):251-260. [31] PORCU E,RÜEGER S,LEPIK K,et al. Mendelian randomization integrating GWAS and eQTL data reveals genetic determinants of complex and clinical traits[J/OL]. Nat Commun,2019,10(1):3300[2025-05-29]. https://doi.org/10.1038/s41467-019-10936-0. [32] SANDERSON E,DAVEY SMITH G,WINDMEIJER F,et al. An examination of multivariable Mendelian randomization in the single-sample and two-sample summary data settings[J]. Int J Epidemiol,2019,48(3):713-727. [33] PATEL A,GILL D,SHUNGIN D,et al. Robust use of phenotypic heterogeneity at drug target genes for mechanistic insights:application of cis-multivariable Mendelian randomization to GLP1R gene region[J]. Genet Epidemiol,2024,48(4):151-163. [34] CARTER A R,SANDERSON E,HAMMERTON G,et al. Mendelian randomisation for mediation analysis:current methods and challenges for implementation[J]. Eur J Epidemiol,2021,36(5):465-478. [35] BURGESS S,THOMPSON D J,REES J M B,et al. Dissecting causal pathways using Mendelian randomization with summarized genetic data:application to age at menarche and risk of breast cancer[J]. Genetics,2017,207(2):481-487. [36] SABATINE M S,GIUGLIANO R P,KEECH A C,et al. Evolocumab and clinical outcomes in patients with cardiovascular disease[J]. N Engl J Med,2017,376(18):1713-1722. [37] IL6R Genetics Consortium Emerging Risk Factors Collaboration. Interleukin-6 receptor pathways in coronary heart disease:a collaborative meta-analysis of 82 studies[J]. Lancet,2012,379(9822):1205-1213. [38] The Interleukin-6 Receptor Mendelian Randomisation Analysis(IL6R MR)Consortium. The interleukin-6 receptor as a target for prevention of coronary heart disease:a Mendelian randomisation analysis[J]. Lancet,2012,379(9822):1214-1224. [39] GILL D,GEORGAKIS M K,LAFFAN M,et al. Genetically determined FⅪ(factor Ⅺ)levels and risk of stroke[J]. Stroke,2018,49(11):2761-2763. [40] YU Z,ZHANG L J,ZHANG G,et al. Lipids,apolipoproteins,statins,and intracerebral hemorrhage:a Mendelian randomization study[J]. Ann Neurol,2022,92(3):390-399. [41] HALL S S. Genetics:a gene of rare effect[J]. Nature,2013,496(7444):152-155. [42] COHEN J,PERTSEMLIDIS A,KOTOWSKI I K,et al. Low LDL cholesterol in individuals of African descent resulting from frequent nonsense mutations in PCSK9[J]. Nat Genet,2005,37(2):161-165. [43] COHEN J C,BOERWINKLE E,MOSLEY T H,et al. Sequence variations in PCSK9,low LDL,and protection against coronary heart disease[J]. N Engl J Med,2006,354(12):1264-1272. [44] HOOPER A J,MARAIS A D,TANYANYIWA D M,et al. The C679X mutation in PCSK9 is present and lowers blood cholesterol in a Southern African population[J]. Atherosclerosis,2007,193(2):445-448. [45] FASANO T,CEFALÙ A B,DI LEO E,et al. A novel loss of function mutation of PCSK9 gene in white subjects with low-plasma low-density lipoprotein cholesterol[J]. Arterioscler Thromb Vasc Biol,2007,27(3):677-681. [46] SHAPIRO M D,TAVORI H,FAZIO S. PCSK9:from basic science discoveries to clinical trials[J]. Circ Res,2018,122(10):1420-1438. [47] BENN M,NORDESTGAARD B G,FRIKKE-SCHMIDT R,et al. Low LDL cholesterol,PCSK9 and HMGCR genetic variation,and risk of Alzheimer’s disease and Parkinson’s disease:Mendelian randomisation study[J/OL]. BMJ,2017,357:j1648[2025-05-29]. https://doi.org/10.1136/bmj.j1648. [48] BOVIJN J,LINDGREN C M,HOLMES M V. Genetic variants mimicking therapeutic inhibition of IL-6 receptor signaling and risk of COVID-19[J/OL]. Lancet Rheumatol,2020,2(11):e658-e659[2025-05-29]. https://doi.org/10.1016/S2665-9913 (20) 30345-3. [49] LARSSON S C,BURGESS S,GILL D. Genetically proxied interleukin-6 receptor inhibition:opposing associations with COVID-19 and pneumonia[J/OL]. Eur Respir J,2021,57(1):2003545[2025-05-29]. https://doi.org/10.1183/13993003.03545-2020. [50] RAJASUNDARAM S,BURGESS S,GILL D. Treatment of severe COVID-19 with interleukin 6 receptor inhibition[J/OL]. BMJ Med,2022,1(1):e000144[2025-05-29]. https://doi.org/10.1136/bmjmed-2022-000144. [51] RUBIN E J,LONGO D L,BADEN L R. Interleukin-6 receptor inhibition in COVID-19—cooling the inflammatory soup[J]. N Engl J Med,2021,384(16):1564-1565. [52] ZHAO S S,GILL D. Genetically proxied IL-6 receptor inhibition and risk of polymyalgia rheumatica[J]. Ann Rheum Dis,2022,81(10):1480-1482. [53] DEVAUCHELLE-PENSEC V,CARVAJAL-ALEGRIA G,DERNIS E,et al. Effect of tocilizumab on disease activity in patients with active polymyalgia rheumatica receiving glucocorticoid therapy:a randomized clinical trial[J]. JAMA,2022,328(11):1053-1062. [54] RIDKER P M,MACFADYEN J G,THUREN T,et al. Residual inflammatory risk associated with interleukin-18 and interleukin-6 after successful interleukin-1β inhibition with canakinumab:further rationale for the development of targeted anti-cytokine therapies for the treatment of atherothrombosis[J]. Eur Heart J,2020,41(23):2153-2163. [55] KIM S C,SOLOMON D H,ROGERS J R,et al. No difference in cardiovascular risk of tocilizumab versus abatacept for rheumatoid arthritis:a multi-database cohort study[J]. Semin Arthritis Rheum,2018,48(3):399-405. [56] GEORGAKIS M K,MALIK R,LI X,et al. Genetically downregulated interleukin-6 signaling is associated with a favorable cardiometabolic profile:a phenome-wide association study[J]. Circulation,2021,143(11):1177-1180. [57] CHEN L Y,PETERS J E,PRINS B,et al. Systematic Mendelian randomization using the human plasma proteome to discover potential therapeutic targets for stroke[J/OL]. Nat Commun,2022,13(1):6143[2025-05-29]. https://doi.org/10.1038/s41467-022-33675-1. [58] PRAPIADOU S,ŽIVKOVIĆ L,THORAND B,et al. Proteogenomic data integration reveals CXCL10 as a potentially downstream causal mediator for IL-6 signaling on atherosclerosis[J]. Circulation,2024,149(9):669-683. [59] GTEx Consortium. The genotype-tissue expression(GTEx)project[J]. Nat Genet,2013,45(6):580-585. [60] VÕSA U,CLARINGBOULD A,WESTRA H J,et al. Large-scale cis- and trans-eQTL analyses identify thousands of genetic loci and polygenic scores that regulate blood gene expression[J]. Nat Genet,2021,53(9):1300-1310. [61] SUN B B,CHIOU J,TRAYLOR M,et al. Plasma proteomic associations with genetics and health in the UK biobank[J]. Nature,2023,622(7982):329-338. [62] ZHANG J N,DUTTA D,KÖTTGEN A,et al. Plasma proteome analyses in individuals of European and African ancestry identify cis-pQTLs and models for proteome-wide association studies[J]. Nat Genet,2022,54(5):593-602. [63] HAKONARSON H,GULCHER J R,STEFANSSON K. deCODE genetics,Inc.[J]. Pharmacogenomics,2003,4(2):209-215. [64] CEREZO M,SOLLIS E,JI Y,et al. The NHGRI-EBI GWAS Catalog:standards for reusability,sustainability and diversity[J/OL]. Nucleic Acids Res,2025,53(D1):D998-D1005[2025-05-29]. https://doi.org/10.1093/nar/gkae1070. [65] ELSWORTH B,LYON M,ALEXANDER T,et al. The MRC IEU OpenGWAS data infrastructure[J/OL]. bioRxiv,2020[2025-05-29]. https://doi.org/10.1101/2020.08.10.244293. [66] PATERNOSTER L,TILLING K,DAVEY SMITH G. Genetic epidemiology and Mendelian randomization for informing disease therapeutics:conceptual and methodological challenges[J/OL]. PLoS Genet,2017,13(10):e1006944[2025-05-29]. https://doi.org/10.1371/journal.pgen.1006944. [67] MAHMOUD O,DUDBRIDGE F,DAVEY SMITH G,et al. A robust method for collider bias correction in conditional genome-wide association studies[J/OL]. Nat Commun,2022,13(1):619[2025-05-29]. https://doi.org/10.1038/s41467-022-28119-9. [68] SEAMAN S R,WHITE I R. Review of inverse probability weighting for dealing with missing data[J]. Stat Methods Med Res,2013,22(3):278-295. [69] ZAFRIR B,JAFFE R,RUBINSHTEIN R,et al. Influence of body mass index on long-term survival after cardiac catheterization[J]. Am J Cardiol,2018,121(1):113-119. [70] MITCHELL R E,PATERNOSTER L,DAVEY SMITH G. Mendelian randomization in case only studies:a promising approach to be applied with caution[J]. Am J Cardiol,2018,122(12):2169-2171. [71] HERNÁN M A,ROBINS J M. Causal inference:what if[M]. Boca Raton:Chapman & Hall/CRC,2020. [72] GRIFFITH G J,MORRIS T T,TUDBALL M J,et al. Collider bias undermines our understanding of COVID-19 disease risk and severity[J/OL]. Nat Commun,2020,11(1):5749[2025-05-29]. https://doi.org/10.1038/s41467-020-19478-2. [73] DUDBRIDGE F,ALLEN R J,SHEEHAN N A,et al. Adjustment for index event bias in genome-wide association studies of subsequent events[J/OL]. Nat Commun,2019,10(1):1561[2025-05-29]. https://doi.org/10.1038/s41467-019-09381-w. [74] PEARL J. Causality[M]. Cambridge:Cambridge University Press,2009. [75] SPIRTES P,GLYMOUR C,SCHEINES R. Causation,prediction,and search[M]. Cambridge:MIT Press,2001. [76] HOWEY R,SHIN S Y,RELTON C,et al. Bayesian network analysis incorporating genetic anchors complements conventional Mendelian randomization approaches for exploratory analysis of causal relationships in complex data[J/OL]. PLoS Genet,2020,16(3):e1008198[2025-05-29]. https://doi.org/10.1371/journal.pgen.1008198. [77] BADSHA M B,FU A Q. Learning causal biological networks with the principle of Mendelian randomization[J/OL]. Front Genet,2019,10:460[2025-05-29]. https://doi.org/10.3389/fgene.2019.00460. [78] AMAR D,SINNOTT-ARMSTRONG N,ASHLEY E A,et al. Graphical analysis for phenome-wide causal discovery in genotyped population-scale biobanks[J/OL]. Nat Commun,2021,12(1):350[2025-05-29]. https://doi.org/10.1038/s41467-020-20516-2. [79] HOU L,GENG Z,YUAN Z S,et al. MRSL:a causal network pruning algorithm based on GWAS summary data[J/OL]. Brief Bioinform,2024,25(2):bbae086[2025-05-29]. https://doi.org/10.1093/bib/bbae086. [80] FERENCE B A,GINSBERG H N,GRAHAM I,et al. Low-density lipoproteins cause atherosclerotic cardiovascular disease. 1. Evidence from genetic,epidemiologic,and clinical studies. A consensus statement from the European Atherosclerosis Society Consensus Panel[J]. Eur Heart J,2017,38(32):2459-2472. [81] LAWLOR D A,HARBORD R M,STERNE J A C,et al. Mendelian randomization:using genes as instruments for making causal inferences in epidemiology[J]. Stat Med,2008,27(8):1133-1163. [82] VERBANCK M,CHEN C Y,NEALE B,et al. Detection of widespread horizontal pleiotropy in causal relationships inferred from Mendelian randomization between complex traits and diseases[J]. Nat Genet,2018,50(5):693-698. [83] SLOB E A W,BURGESS S. A comparison of robust Mendelian randomization methods using summary data[J]. Genet Epidemiol,2020,44(4):313-329. [84] GILL D,DIB M J,CRONJÉ H T,et al. Common pitfalls in drug target Mendelian randomization and how to avoid them[J/OL]. BMC Med,2024,22(1):473[2025-05-29]. https://doi.org/10.1186/s12916-024-03700-9. |
[1] | JIANG Minghui, XU Zhe, SHI Yanfeng, ZHANG Jie, LI Hao, CHENG Si. Causal Relationship between Lipid Metabolome and Stroke: A Systematic Mendelian Randomization Study [J]. Chinese Journal of Stroke, 2025, 20(6): 675-685. |
[2] | SHANG Yuanyuan, DU Zhengjing, CHEN Jingyi, PENG Bo, LONG Jieqi. Establishment and Evaluation of the Prediction Models of the Relationship between Cardiovascular and Cerebrovascular Diseases and Meteorological Factors [J]. Chinese Journal of Stroke, 2024, 19(6): 632-639. |
[3] | SONG Jinyun, ZHAO Hongyu. Causality between Chronic Kidney Disease and Stroke: A Two-Sample Bidirectional Mendelian Randomization Study [J]. Chinese Journal of Stroke, 2024, 19(12): 1426-1432. |
[4] | HAO Yunyi, XIA Xue, XU Qin, ZHAO Xingquan, WANG Anxin. Construction Specification of Directed Acyclic Graphs: An Introduction to the ESC-DAGs Method and Case Interpretation in Cerebrovascular Disease Research [J]. Chinese Journal of Stroke, 2024, 19(10): 1221-1229. |
[5] |
LI Lanxin, XU Zhe, GOU Lan, SHI Yanfeng, LIU Yang, ZHAO Manman, LI Hao, CHENG Si.
The Bibliometrics and Visual Analysis of Mendelian Randomization Studies in Ischemic Stroke
[J]. Chinese Journal of Stroke, 2023, 18(03): 273-280.
|
[6] | YAN Ran, SHANGGUAN Yi, QIU Xin, LI Zi-Xiao. Mechanism of DNMT3A in Atherosclerosis [J]. Chinese Journal of Stroke, 2021, 16(11): 1178-1182. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||