
Chinese Journal of Stroke ›› 2021, Vol. 16 ›› Issue (01): 81-86.DOI: 10.3969/j.issn.1673-5765.2021.01.015
Previous Articles Next Articles
Received:2020-09-03
Online:2021-01-20
Published:2021-01-20
叶维贞,刘向荣
通讯作者:
刘向荣 lxrpumc@163.com
基金资助:国家自然科学基金(81871021;81471209)
YE Wei-Zhen,LIU Xiang-Rong. Progress of N6-Methyladenosine Modification in Cardiovascular and Cerebrovascular Diseases[J]. Chinese Journal of Stroke, 2021, 16(01): 81-86.
叶维贞,刘向荣. N6-甲基腺苷修饰在心脑血管疾病中的研究进展[J]. 中国卒中杂志, 2021, 16(01): 81-86.
| [1] 《中国脑卒中防治报告2019》编写组. 《中国脑卒中防治报告2019》概要[J]. 中国脑血管病杂志,2020,17(5):272-281.[2] YAO W, HAN X, GE M, et al. N6-methyladenosine(m6A)methylation in ischemia-reperfusion injury[J].Cell Death Dis,2020,11(6):478.[3] LI Y,WANG J W,HUANG C Y,et al. RNA N6-methyladenosine:a promising molecular target inmetabolic diseases[J/OL]. Cell Biosci,2020,10:19[2020-09-01]. https://doi.org/10.1186/s13578-020-00385-4.[4] DESROSIERS R,FRIDERICI K,ROTTMAN F.Identification of methylated nucleosides in messengerRNA from Novikoff hepatoma cells[J]. Proc NatlAcad Sci USA,1974,71(10):3971-3975.[5] ZHANG H,SHI X R,HUANG T,et al. Dynamiclandscape and evolution of m6A methylation inhuman[J]. Nucleic Acids Res,2020,48(11):6251-6264.[6] SHI H L,WEI J B,HE C. Where,when,and how:context-dependent functions of RNA methylationwriters,readers,and erasers[J]. Mol Cell,2019,74(4):640-650.[7] HE L,LI H Y,WU A Q,et al. Functions of N6-methyladenosine and its role in cancer[J]. MolCancer,2019,18(1):176.[8] XIAO S,CAO S,HUANG Q T,et al. The RNA N6-methyladenosine modification landscape of humanfetal tissues[J]. Nat Cell Biol,2019,21(5):651-661.[9] YANG D D,QIAO J,WANG G Y,et al. N6-Methyladenosine modification of lincRNA 1281is critically required for mESC differentiationpotential[J]. Nucleic Acids Res,2018,46(8):3906-3920.[10] YANG Y,FAN X J,MAO M W,et al. Extensivetranslation of circular RNAs driven by N6-methyladenosine[J]. Cell Res,2017,27(5):626-641.[11] CHEN Y G,CHEN R,AHMAD S,et al. N6-methyladenosine modification controls circular RNAimmunity[J]. Mol Cell,2019,76(1):96-109.[12] ERSON-BENSAN A E,BEGIK O. m6A modificationand implications for microRNAs[J]. Microrna,2017,6(2):97-101.[13] DUAN H C,WANG Y,JIA G F. Dynamic andreversible RNA N6-methyladenosine methylation[J/OL]. Wiley Interdiscip Rev RNA,2019,10(1):e1507[2020-09-01]. https://doi.org/10.1002/wrna.1507.[14] WU R F,JIANG D H,WANG Y Z,et al. N6-methyladenosine(m6A)methylation in mRNA witha dynamic and reversible epigenetic modification[J].Mol Biotechnol,2016,58(7):450-459.[15] PATIL D P,CHEN C K,PICKERING B F,et al.m6A RNA methylation promotes XIST-mediatedtranscriptional repression[J]. Nature,2016,537(7620):369-373.[16] LEONETTI A M,CHU M Y,RAMNARAIGN F O,et al. An emerging role of m6A in memory:a case fortranslational priming[J]. Int J Mol Sci,2020,21(20):7447.[17] ZACCARA S,JAFFREY S R. A unified model forthe function of YTHDF proteins in regulating m6AmodifiedmRNA[J]. Cell,2020,181(7):1582-1595.[18] DAI N. The diverse functions of IMP2/IGF2BP2 inmetabolism[J]. Trends Endocrinol Metab,2020,31(9):670-679.[19] GOMES-DUARTE A,LACERDA R,MENEZES J,et al. eIF3:a factor for human health and disease[J].RNA Biol,2018,15(1):26-34.[20] ZHENG N,SU J,HU H C,et al. Research progressof N6-methyladenosine in the cardiovascularsystem[J/OL]. Med Sci Monit,2020,26:e921742[2020-09-01]. https://doi.org/10.12659/MSM.921742.[21] MO X B,LEI S F,ZHANG Y H,et al. Examinationof the associations between m6A-associated singlenucleotidepolymorphisms and blood pressure[J].Hypertens Res,2019,42(10):1582-1589.[22] SOUNESS J E,STOUFFER J E,DE SANCHEZ VC. Effect of N6-methyladenosine on fat-cell glucosemetabolism. Evidence for two modes of action[J].Biochem Pharmacol,1982,31(24):3961-3971.[23] SHEN F,HUANG W,HUANG J T,et al. DecreasedN6-methyladenosine in peripheral blood RNA fromdiabetic patients is associated with FTO expressionrather than ALKBH5[J/OL]. J Clin Endocrinol Metab,2015,100(1):E148-154[2020-09-01]. https://doi.org/10.1210/jc.2014-1893.[24] YANG Y,SHEN F,HUANG W,et al. Glucoseis involved in the dynamic regulation of m6A inpatients with type 2 diabetes[J]. J Clin EndocrinolMetab,2019,104(3):665-673.[25] ZHOU B,LIU C Z,XU L Y,et al. N6-methyladenosine reader protein YTHDC2 suppresses liver steatosis via regulation of mRNA stability oflipogenic genes[J/OL]. Hepatology,2020[2020-09-01]. https://doi.org/10.1002/hep.31220.[26] ZHONG X,YU J Y,FRAZIER K,et al. Circadianclock regulation of hepatic lipid metabolism bymodulation of m6A mRNA methylation[J]. Cell Rep,2018,25(7):1816-1828.[27] XIE W,MA L L,XU Y Q,et al. METTL3 inhibitshepatic insulin sensitivity via N6-methyladenosinemodification of Fasn mRNA and promoting fattyacid metabolism[J]. Biochem Biophys Res Commun,2019,518(1):120-126.[28] MO X B,LEI S F,ZHANG Y H,et al. Genomewideenrichment of m6A-associated singlenucleotidepolymorphisms in the lipid loci[J].Pharmacogenomics J,2019,19(4):347-357.[29] WANG X X,WU R F,LIU Y H,et al. m6A mRNAmethylation controls autophagy and adipogenesis bytargeting Atg5 and Atg7[J]. Autophagy,2020,16(7):1221-1235.[30] CHEN X L,LUO Y L,JIA G,et al. FTO promotesadipogenesis through inhibition of the Wnt/β-cateninsignaling pathway in porcine intramuscularpreadipocytes[J]. Anim Biotechnol,2017,28(4):268-274.[31] MERKESTEIN M,LABER S,MCMURRAY F,et al. FTO influences adipogenesis by regulatingmitotic clonal expansion[J/OL]. Nat Commun,2015,6:6792[2020-09-01]. https://doi.org/10.1038/ncomms7792.[32] KOBAYASHI M,OHSUGI M,SASAKO T,etal. The RNA methyltransferase complex of WTAP,METTL3,and METTL14 regulates mitotic clonalexpansion in adipogenesis[J/OL]. Mol Cell Biol,2018,38(16):e116-118[2020-09-01]. https://doi.org/10.1128/MCB.00116-18.[33] SONG H W,FENG X,ZHANG H,et al. METTL3and ALKBH5 oppositely regulate m6A modificationof TFEB mRNA,which dictates the fate of hypoxia/reoxygenation-treated cardiomyocytes[J]. Autophagy,2019,15(8):1419-1437.[34] CHOKKALLA A K,MEHTA S L,KIM T,et al.Transient focal ischemia significantly alters the m6Aepitranscriptomic tagging of RNAs in the brain[J].Stroke,2019,50(10):2912-2921.[35] GERKEN T,GIRARD C A,TUNG Y C,etal. The obesity-associated FTO gene encodesa 2-oxoglutarate-dependent nucleic aciddemethylase[J]. Science,2007,318(5855):1469-1472.[36] MATHIYALAGAN P,ADAMIAK M,MAYOURIAN J,et al. FTO-dependent N6-methyladenosine regulates cardiac function duringremodeling and repair[J/OL]. Circulation,2019,139:518-532[2020-09-01]. https://doi.org/10.1161/CIRCULATIONAHA.118.033794.[37] XU K W,MO Y C,LI D,et al. N6-methyladenosinedemethylases Alkbh5/Fto regulate cerebral ischemiareperfusioninjury[J/OL]. Ther Adv Chronic Dis,2020,11:2040622320916024[2020-09-01].https://doi.org/10.1177/2040622320916024.[38] LIU X,ZHANG Z B,RUAN J B,et al.Inflammasome-activated gasdermin D causespyroptosis by forming membrane pores[J]. Nature,2016,535(7610):153-158.[39] DIAO M Y,ZHU Y,YANG J,et al. Hypothermiaprotects neurons against ischemia/reperfusioninducedpyroptosis via m6A-mediated activationof PTEN and the PI3K/Akt/GSK-3β signalingpathway[J/OL]. Brain Res Bull,2020,159:25-31[2020-09-01]. https://doi.org/10.1016/j.brainresbull.2020.03.011.[40] ZHENG L B,TANG X L,LU M Y,et al.microRNA-421-3p prevents inflammatory responsein cerebral ischemia/reperfusion injury throughtargeting m6A reader YTHDF1 to inhibit p65 mRNAtranslation[J/OL]. Int Immunopharmacol,2020,88:106937[2020-09-01]. https://doi.org/10.1016/j.intimp.2020.106937. |
| Viewed | ||||||
|
Full text |
|
|||||
|
Abstract |
|
|||||