JIANG Yingyu, CHEN Siding, QIU Xin, GU Hongqiu. Application of Machine Learning in Genomic Data Analysis of Cerebrovascular Diseases
[J]. Chinese Journal of Stroke, 2023, 18(07): 751-757.
[1] GBD 2016 Causes of Death Collaborators. Global,regional,and national age-sex specific mortality for 264 causes of death,1980-2016:a systematic analysis for the global burden of disease study 2016[J]. Lancet,2017,390(10100):1151-1210.
[2] WANG Y J,LI Z X,GU H Q,et al. China stroke statistics 2019:a report from the National Center for Healthcare Quality Management in Neurological Diseases,China National Clinical Research Center for Neurological Diseases,the Chinese Stroke Association,National Center for Chronic and Non-communicable Disease Control and Prevention,Chinese Center for Disease Control and Prevention and Institute for Global Neuroscience and Stroke Collaborations[J]. Stroke Vasc Neurol,2020,5(3):211-239.
[3] MARKUS H S,BEVAN S. Mechanisms and treatment of ischaemic stroke-insights from genetic associations[J]. Nat Rev Neurol,2014,10(12):723-730.
[4] CAMPBELL B C V,DE SILVA D A,MACLEOD M R,et al. Ischaemic stroke[J/OL]. Nat Rev Dis Primers,2019,5(1):70[2023-05-10]. https://doi.org/10.1038/s41572-019-0118-8.
[5] JIANG Y H,YANG M,WANG S H,et al. Emerging role of deep learning-based artificial intelligence in tumor pathology[J]. Cancer Commun(Lond),2020,40(4):154-166.
[6] JIANG F,JIANG Y,ZHI H,et al. Artificial intelligence in healthcare:past,present and future[J]. Stroke Vasc Neurol,2017,2(4):230-243.
[7] LIU H J,HOU L P,XU S H,et al. Discovering cerebral ischemic stroke associated genes based on network representation learning[J/OL]. Front Genet,2021,12:728333[2023-05-10]. https://doi.org/10.3389/fgene.2021.728333.
[8] THEOFILATOS K,KORFIATI A,MAVROUDI S,et al. Discovery of stroke-related blood biomarkers from gene expression network models[J/OL]. BMC Med Genomics,2019,12(1):118[2023-05-10]. https://doi.org/10.1186/s12920-019-0566-8.
[9] MARTHA S R,CHENG Q,FRASER J F,et al. Expression of cytokines and chemokines as predictors of stroke outcomes in acute ischemic stroke[J/OL]. Front Neurol,2020,10:1391[2023-05-10]. https://doi.org/10.3389/fneur.2019.01391.
[10] ROYSTON P,MOONS K G,ALTMAN D G,et al. Prognosis and prognostic research:developing a prognostic model[J/OL]. BMJ,2009,338:b604[2023-05-10]. https://doi.org/10.1136/bmj.b604
[11] WANG X,WANG Q,WANG K,et al. Is immune suppression involved in the ischemic stroke? A study based on computational biology[J/OL]. Front Aging Neurosci,2022,14:830494[2023-05-10]. https://doi.org/10.3389/fnagi.2022.830494.
[12] O'CONNELL G C,PETRONE A B,TREADWAY M B,et al. Machine-learning approach identifies a pattern of gene expression in peripheral blood that can accurately detect ischaemic stroke[J/OL]. NPJ Genom Med,2016,1:16038[2023-05-10]. https://doi.org/10.1038/npjgenmed.2016.38.
[13] WANG X,MENG X Y,MENG L B,et al. Joint efficacy of the three biomarkers SNCA,GYPB and HBG1 for atrial fibrillation and stroke:analysis via the support vector machine neural network[J]. J Cell Mol Med,2022,26(7):2010-2022.
[14] ERASLAN G,AVSEC Ž,GAGNEUR J,et al. Deep learning:new computational modelling techniques for genomics[J]. Nat Rev Genet,2019,20(7):389-403.
[15] GREENER J G,KANDATHIL S M,MOFFAT L,et al. A guide to machine learning for biologists[J]. Nat Rev Mol Cell Biol,2022,23(1):40-55.
[16] NEWMAN A M,LIU C L,GREEN M R,et al. Robust enumeration of cell subsets from tissue expression profiles[J]. Nat Methods,2015,12(5):453-457.
[17] WHALEN S,SCHREIBER J,NOBLE W S,et al. Navigating the pitfalls of applying machine learning in genomics[J]. Nat Rev Genet,2022,23(3):169-181.
[18] 邱越,邢卓,孙筱松,等. 机器学习在多组学数据分析中的应用[J]. 科技与创新,2021,8(24):170-171.
Medical Quality Management and Promotion Branch of Chinese Stroke Association, Writing Group of Chinese Expert Consensus on Standardized Bilingual Terminology for Atherosclerotic Cerebrovascular Disease.