[1] YANG
F,FU H,LU Y F,et al. Post-stroke pain hypersensitivity induced by experimental
thalamic hemorrhage in rats is region-specific and demonstrates limited
efficacy of gabapentin[J]. Neurosci Bull,2014,30(6):887-902.
[2] LIAMPAS
A,VELIDAKIS N,GEORGIOU T,et al. Prevalence and management challenges in central post-stroke
neuropathic pain:a systematic review and
meta-analysis[J]. Adv Ther,2020,37(7):3278-3291.
[3] KLIT
H,FINNERUP N B,JENSEN T S.
Central post-stroke pain:clinical characteristics,pathophysiology,and management[J]. Lancet
Neurol,2009,8(9):857-868.
[4] JÖNSSON
A C,LINDGREN I,HALLSTRÖM B,et al. Prevalence and intensity of pain after stroke:a population based study focusing on patients’ perspectives[J]. J Neurol Neurosurg Psychiatry,2006,77(5):590-595.
[5] WIDAR
M,AHLSTRÖM G,EK A C.
Health-related quality of life in persons with long-term pain after a
stroke[J]. J Clin Nurs,2004,13(4):497-505.
[6] WIDAR
M,EK A C,AHLSTRÖM G. Coping
with long-term pain after a stroke[J]. J Pain Symptom Manage,2004,27(3):215-225.
[7] SAIJO
K,GLASS C K. Microglial cell origin and phenotypes in
health and disease[J]. Nat Rev Immunol,2011,11(11):775-787.
[8] ELLIS
A,BENNETT D L H. Neuroinflammation and the generation
of neuropathic pain[J]. Br J Anaesth,2013,111(1):26-37.
[9] TANG
Y,LE W D. Differential roles of M1 and M2 microglia in
neurodegenerative diseases[J]. Mol Neurobiol,2016,53(2):1181-1194.
[10] YENARI
M A,KAUPPINEN T M,SWANSON R A.
Microglial activation in stroke:therapeutic targets[J].
Neurotherapeutics,2010,7(4):378-391.
[11] WANG
J,XING H Y,WAN L,et al. Treatment targets for M2 microglia polarization in ischemic
stroke[J/OL]. Biomed Pharmacother,2018,105:518-525[2023-11-01].
https://doi.org/10.1016/j.biopha.2018.05.143.
[12] PONOMAREV
E D,VEREMEYKO T,WEINER H L.
MicroRNAs are universal regulators of differentiation,activation,and polarization of microglia and macrophages in normal and diseased
CNS[J]. Glia,2013,61(1):91-103.
[13] QIN
C,ZHOU L Q,MA X T,et al. Dual functions of microglia in ischemic stroke[J]. Neurosci
Bull,2019,35(5):921-933.
[14] CALVO
M,DAWES J M,BENNETT D L H. The
role of the immune system in the generation of neuropathic pain[J]. Lancet
Neurol,2012,11(7):629-642.
[15] HANADA
T,KURIHARA T,TOKUDOME M,et al. Development and pharmacological verification of a new mouse
model of central post-stroke pain[J/OL]. Neurosci Res,2014,78:72-80[2023-11-01].
https://doi.org/10.1016/j.neures.2013.09.005.
[16] HIRAGA
S I,ITOKAZU T,HOSHIKO M,et al. Microglial depletion under thalamic hemorrhage ameliorates
mechanical allodynia and suppresses aberrant axonal sprouting[J/OL]. JCI
Insight,2020,5(3):e131801[2023-11-01].
https://doi.org/10.1172/jci.insight.131801.
[17] ABBRACCHIO
M P,BURNSTOCK G. Purinoceptors:are
there families of P2X and P2Y purinoceptors?[J].
Pharmacol Ther,1994,64(3):445-475.
[18] TSUDA
M,KUBOYAMA K,INOUE T,et al. Behavioral phenotypes of mice lacking purinergic P2X4
receptors in acute and chronic pain assays[J/OL].
Mol Pain,2009,5:28[2023-11-01]. https://doi.org/10.1186/1744-8069-5-28.
[19] TSUDA
M,INOUE K,SALTER M W.
Neuropathic pain and spinal microglia:a big problem
from molecules in“small”glia[J].
Trends Neurosci,2005,28(2):101-107.
[20] TSUDA
M,SHIGEMOTO-MOGAMI Y,KOIZUMI S,et al. P2X4 receptors induced in spinal microglia gate tactile
allodynia after nerve injury[J]. Nature,2003,424(6950):778-783.
[21] ULMANN
L,HATCHER J P,HUGHES J P,et al. Up-regulation of P2X4 receptors in spinal microglia after
peripheral nerve injury mediates BDNF release and neuropathic pain[J]. J
Neurosci,2008,28(44):11263-11268.
[22] COULL
J A M,BEGGS S,BOUDREAU D,et al. BDNF from microglia causes the shift in neuronal anion
gradient underlying neuropathic pain[J]. Nature,2005,438(7070):1017-1021.
[23] TRANG
T,BEGGS S,WAN X,et al. P2X4-receptor-mediated synthesis and release of brain-derived
neurotrophic factor in microglia is dependent on calcium and
p38-mitogen-activated protein kinase activation[J]. J Neurosci,2009,29(11):3518-3528.
[24] LU
H F,XU C Y,ZHANG L,et al. A new central post-stroke pain rat model:autologous blood injected thalamic hemorrhage involved increased
expression of P2X4 receptor[J/OL]. Neurosci Lett,2018,687:124-130
[2023-11-01]. https://doi.org/10.1016/j.neulet.2018.09.023.
[25] BROUGH
D,LE FEUVRE R A,IWAKURA Y,et al. Purinergic(P2X7)receptor activation of microglia induces cell death via an
interleukin-1-independent mechanism[J]. Mol Cell Neurosci,2002,19(2):272-280.
[26] MONIF
M,BURNSTOCK G,WILLIAMS D A.
Microglia:proliferation and activation driven by the
P2X7 receptor[J]. Int J Biochem Cell Biol,2010,42(11):1753-1756.
[27] PELEGRIN
P,SURPRENANT A. The P2X7 receptor-pannexin connection
to dye uptake and IL-1β release[J]. Purinergic Signal,2009,5(2):129-137.
[28] KUAN
Y H,SHIH H C,TANG S C,et al. Targeting P2X7 receptor for the treatment of central
post-stroke pain in a rodent model[J/OL]. Neurobiol Dis,2015,78:134-145[2023-11-01].
https://doi.org/10.1016/j.nbd.
2015.02.028.
[29] BRUZZONE
R,HORMUZDI S G,BARBE M T,et al. Pannexins,a family of gap junction
proteins expressed in brain[J]. Proc Natl Acad Sci U S A,2003,100(23):13644-13649.
[30] BURMA
N E,BONIN R P,LEDUC-PESSAH H,et al. Blocking microglial pannexin-1 channels alleviates morphine
withdrawal in rodents[J]. Nat Med,2017,23(3):355-360.
[31] SHESTOPALOV
V I,SLEPAK V Z. Molecular pathways of
pannexin1-mediated neurotoxicity[J/OL]. Front Physiol,2014,5:23[2023-11-01].
https://doi.org/10.3389/fphys.2014.00023.
[32] BU
F,LI Y R,LAN S M,et al. Blocking pannexin-1 channels alleviates thalamic
hemorrhage-induced pain and inflammatory depolarization of microglia in
mice[J]. ACS Chem Neurosci,2023,14(14):2548-2559.
[33] RéAUX-LE GOAZIGO A,VAN STEENWINCKEL J,ROSTèNE W,et al.
Current status of chemokines in the adult CNS[J/OL]. Prog Neurobiol,2013,104:67-92[2023-11-01].
https://doi.org/10.1016/j.pneurobio.2013.02.001.
[34] REAUX-LE
GOAZIGO A,RIVAT C,KITABGI P,et al. Cellular and subcellular localization of CXCL12 and CXCR4 in
rat nociceptive structures:physiological relevance[J].
Eur J Neurosci,2012,36(5):2619-2631.
[35] LI
X Q,ZHANG Z L,TAN W F,et al. Down-regulation of CXCL12/CXCR4 expression alleviates
ischemia-reperfusion-induced inflammatory pain via inhibiting glial TLR4 activation in the spinal cord
[J/OL]. PloS One,2016,11(10):e0163807[2023-11-01].
https://doi.org/10.1371/journal.pone.0163807.
[36] SHEN
W,HU X M,LIU Y N,et al. CXCL12 in astrocytes contributes to bone cancer pain through
CXCR4-mediated neuronal sensitization and glial activation in rat spinal
cord[J/OL]. J Neuroinflammation,2014,11:75[2023-11-01].
https://doi.org/10.1186/1742-2094-11-75.
[37] LUO
X,TAI W L,SUN L T,et al. Crosstalk between astrocytic CXCL12 and microglial CXCR4
contributes to the development of neuropathic pain[J/OL]. Mol Pain,2016,12:1744806916636385[2023-11-01].
https://doi.org/10.1177/1744806916636385.
[38] YANG
F,LUO W J,SUN W,et al. SDF1-CXCR4 signaling maintains central post-stroke pain
through mediation of glial-neuronal interactions[J/OL]. Front Mol Neurosci,2017,10:226[2023-11-01].
https://doi.org/10.3389/fnmol.2017.00226.
[39] LIANG
T,CHEN X F,YANG Y,et al. Secondary damage and neuroinflammation in the spinal dorsal
horn mediate post-thalamic hemorrhagic stroke pain hypersensitivity:SDF1-CXCR4 signaling mediation
[J/OL]. Front Mol Neurosci,2022,15:911476[2023-11-01].
https://doi.org/10.3389/fnmol.2022.911476.
[40] MUESSEL
M J,KLEIN R M,WILSON A M,et al. Ablation of the chemokine monocyte chemoattractant protein-1
delays retrograde neuronal degeneration,attenuates
microglial activation,and alters expression of cell
death molecules[J]. Brain Res Mol Brain Res,2002,103(1/2):12-27.
[41] YANG
F,JING J J,FU S Y,et al. Spinal MCP-1
contributes to central post-stroke pain by inducing central sensitization in
rats[J]. Mol Neurobiol,2023,60(4):2086-2098.
[42] ZHANG
J Y,TAKAHASHI H K,LIU K,et al. Anti-high mobility group box-1 monoclonal antibody protects
the blood-brain barrier from ischemia-induced disruption in rats[J]. Stroke,2011,42(5):1420-1428.
[43] MATSUURA
W,HARADA S,LIU K Y,et al. Evidence of a role for spinal HMGB1 in ischemic
stress-induced mechanical allodynia in mice[J/OL]. Brain Res,2018,1687:1-10[2023-11-01].
https://doi.org/10.1016/j.brainres.2018.02.026.
[44] SHI
Z M,JING J J,XUE Z J,et al. Stellate ganglion block ameliorated central post-stroke pain
with comorbid anxiety and depression through inhibiting HIF-1α/NLRP3 signaling following thalamic hemorrhagic stroke[J/OL]. J
Neuroinflammation,2023,20(1):82[2023-11-01].
https://doi.org/10.1186/s12974-023-02765-2.
[45] LI
S J,ZHANG Y F,MA S H,et al. The role of NLRP3 inflammasome in stroke and central poststroke
pain[J/OL]. Medicine(Baltimore),2018,97(33):e11861[2023-11-01]. https://doi.org/10.1097/MD.0000000000011861.
[46] LOHMAN
A W,WEILINGER N L,SANTOS S M,et al. Regulation of pannexin channels in the central nervous system
by Src family kinases[J/OL]. Neurosci Lett,2019,695:65-70[2023-11-01].
https://doi.org/10.1016/j.neulet.2017.09.019.
[47] OKADA
M. Regulation of the Src family kinases by Csk[J]. Int J Biol Sci,2012,8(10):1385-1397.
[48] HUANG
T F,FU G L,GAO J,et al. Fgr contributes to hemorrhage-induced thalamic pain by
activating NF-κB/ERK1/2 pathways[J/OL]. JCI Insight,2020,5(20):e139987[2023-11-01]. https://doi.org/10.1172/jci.insight.139987.
[49] KANG
O H,LEE G H,CHOI H J,et al. Ethyl acetate extract from angelica dahuricae radix inhibits
lipopolysaccharide-induced production of nitric oxide,prostaglandin
E2 and tumor necrosis factor-α via mitogen-activated
protein kinases and nuclear factor-κB in
macrophages[J]. Pharmacol Res,2007,55(4):263-270.
[50] HUNG
A L,LIM M,DOSHI T L. Targeting
cytokines for treatment of neuropathic pain[J/OL]. Scand J Pain,2017,17:287-293[2023-11-01].
https://doi.org/10.1016/j.sjpain.2017.08.002.
[51] LIU
T T,LI T,CHEN X H,et al. EETs/sEHi alleviates nociception by blocking the crosslink
between endoplasmic reticulum stress and neuroinflammation in a central
poststroke pain model[J/OL]. J Neuroinflammation,2021,18(1):211[2023-11-01].
https://doi.org/10.1186/s12974-021-02255-3.
[52] INFANTINO
R,SCHIANO C,LUONGO L,et al. MED1/BDNF/TrkB pathway is involved in thalamic hemorrhage-induced
pain and depression by regulating microglia[J/OL]. Neurobiol Dis,2022,164:105611
[2023-11-01]. https://doi.org/10.1016/j.nbd.2022.105611.
|