中国卒中杂志 ›› 2024, Vol. 19 ›› Issue (10): 1205-1214.DOI: 10.3969/j.issn.1673-5765.2024.10.014
鞠佳俊,王心心,杭黎华
收稿日期:
2023-12-18
出版日期:
2024-10-20
发布日期:
2024-10-20
通讯作者:
杭黎华 zjhanglihua@foxmail.com
基金资助:
JU Jiajun, WANG Xinxin, HANG Lihua
Received:
2023-12-18
Online:
2024-10-20
Published:
2024-10-20
Contact:
HANG Lihua, E-mail: zjhanglihua@foxmail.com
摘要: 脑出血是指脑实质内非外伤性血管破裂引起的出血,是一种严重的神经系统疾病。其主要病理生理特点包括大量出血和神经元死亡,可损害神经免疫系统,严重影响患者的预后。铁离子稳态对维持神经系统的正常功能至关重要,然而脑出血发生后的铁代谢紊乱会导致脑内铁积聚。过量的铁通过激活炎症信号通路、调节炎症细胞功能等途径参与神经炎症反应,而神经炎症细胞也调节铁离子的运输和储存,两者相互作用共同加重神经损伤。本文综述了脑出血后神经炎症与脑铁代谢的相关研究进展,旨在为脑出血的临床治疗提供参考。
中图分类号:
鞠佳俊, 王心心, 杭黎华. 脑出血后神经炎症与脑铁代谢的相关性研究进展[J]. 中国卒中杂志, 2024, 19(10): 1205-1214.
JU Jiajun, WANG Xinxin, HANG Lihua. Research Progress on the Correlation between Neuroinflammation and Brain Iron Metabolism after Intracerebral Hemorrhage[J]. Chinese Journal of Stroke, 2024, 19(10): 1205-1214.
[1] BRODERICK J P,GROTTA J C,NAIDECH A M,et al. The story of intracerebral hemorrhage:from recalcitrant to treatable disease[J]. Stroke,2021,52(5):1905-1914. [2] TSCHOE C,BUSHNELL C D,DUNCAN P W,et al. Neuroinflammation after intracerebral hemorrhage and potential therapeutic targets[J]. J Stroke,2020,22(1):29-46. [3] SUN Y Y,LI Q,GUO H X,et al. Ferroptosis and iron metabolism after intracerebral hemorrhage[J/OL]. Cells,2022,12(1):90[2023-12-01]. https://doi.org/10.3390/cells12010090. [4] TANG S C,GAO P,CHEN H M,et al. The role of iron,its metabolism and ferroptosis in traumatic brain injury [J/OL]. Front Cell Neurosci,2020,14:590789[2023-12-01]. https://doi.org/10.3389/fncel.2020.590789. [5] WEI Y F,SONG X X,GAO Y,et al. Iron toxicity in intracerebral hemorrhage:physiopathological and therapeutic implications[J/OL]. Brain Res Bull,2022,178:144-154[2023-12-01]. https://doi.org/10.1016/j. brainresbull.2021.11.014. [6] ZHANG W Q,WU Q Y,HAO S L,et al. The hallmark and crosstalk of immune cells after intracerebral hemorrhage:immunotherapy perspectives[J/OL]. Front Neurosci,2023,16:1117999[2023-12-01]. https://doi.org/10.3389/fnins.2022.1117999. [7] ZAMORANO M,OLSON S D,HAASE C,et al. Innate immune activation and white matter injury in a rat model of neonatal intraventricular hemorrhage are dependent on developmental stage[J/OL]. Exp Neurol,2023,367:114472[2023-12-01]. https://doi.org/10.1016/j. expneurol.2023.114472. [8] LIN J,XU Y,GUO P W,et al. CCL5/CCR5-mediated peripheral inflammation exacerbates blood-brain barrier disruption after intracerebral hemorrhage in mice [J/OL]. J Transl Med,2023,21(1):196[2023-12-01]. https://doi.org/10.1186/s12967-023-04044-3. [9] BAUTISTA W,ADELSON P D,BICHER N,et al. Secondary mechanisms of injury and viable pathophysiological targets in intracerebral hemorrhage[J/OL]. Ther Adv Neurol Disord,2021,14:17562864211049208[2023-12-01]. https://doi.org/10.1177/17562864211049208. [10] YE F H,GARTON H J L,HUA Y,et al. The role of thrombin in brain injury after hemorrhagic and ischemic stroke[J]. Transl Stroke Res,2021,12(3):496-511. [11] GÓMEZ MORILLAS A,BESSON V C,LEROUET D. Microglia and neuroinflammation:what place for P2RY12?[J/OL]. Int J Mol Sci,2021,22(4):1636[2023-12-01]. https://doi.org/10.3390/ijms22041636. [12] ZHANG W,TIAN T,GONG S X,et al. Microglia-associated neuroinflammation is a potential therapeutic target for ischemic stroke[J]. Neural Regen Res,2021,16(1):6-11. [13] MEI S H,SHAO Y J,FANG Y J,et al. The changes of leukocytes in brain and blood after intracerebral hemorrhage[J/OL]. Front Immunol,2021,12:617163[2023-12-01]. https://doi.org/10.3389/fimmu.2021.617163. [14] LI Z G,LI M S,SHI S X,et al. Brain transforms natural killer cells that exacerbate brain edema after intracerebral hemorrhage[J/OL]. J Exp Med,2020,217(12):e20200213[2023-12-01]. https://doi.org/10.1084/jem.20200213. [15] ZHU H M,WANG Z Q,YU J X,et al. Role and mechanisms of cytokines in the secondary brain injury after intracerebral hemorrhage[J/OL]. Prog Neurobiol,2019,178:101610[2023-12-01]. https://doi.org/10.1016/j.pneurobio.2019.03.003. [16] ZEIDAN R S,HAN S M,LEEUWENBURGH C,et al. Iron homeostasis and organismal aging[J/OL]. Ageing Res Rev,2021,72:101510[2023-12-01]. https://doi.org/10.1016/j.arr.2021.101510. [17] MEANS R T. Iron deficiency and iron deficiency anemia:implications and impact in pregnancy,fetal development,and early childhood parameters[J/OL]. Nutrients,2020,12(2):447[2023-12-01]. https://doi.org/10.3390/nu12020447. [18] CAMASCHELLA C,NAI A,SILVESTRI L. Iron metabolism and iron disorders revisited in the hepcidin era[J]. Haematologica,2020,105(2):260-272. [19] PIPERNO A,PELUCCHI S,MARIANI R. Inherited iron overload disorders[J/OL]. Transl Gastroenterol Hepatol,2020,5:25[2023-12-01]. https://doi.org/10.21037/tgh.2019.11.15. [20] FERREIRA A,NEVES P,GOZZELINO R. Multilevel impacts of iron in the brain:the cross talk between neurophysiological mechanisms,cognition,and social behavior[J/OL]. Pharmaceuticals(Basel),2019,12(3):126[2023-12-01]. https://doi.org/10.3390/ph12030126. [21] SCIMEMI A. Astrocytes and the warning signs of intracerebral hemorrhagic stroke[J/OL]. Neural Plast,2018,2018:7301623[2023-12-01]. https://doi.org/10.1155/2018/7301623. [22] PIVINA L,SEMENOVA Y,DOŞA M D,et al. Iron deficiency,cognitive functions,and neurobehavioral disorders in children[J]. J Mol Neurosci,2019,68(1):1-10. [23] KIM Y,CONNOR J R. The roles of iron and HFE genotype in neurological diseases[J/OL]. Mol Aspects Med,2020,75:100867[2023-12-01]. https://doi.org/10.1016/j.mam.2020.100867. [24] GONG Y,ZHANG G G,LI B,et al. BMAL1 attenuates intracerebral hemorrhage-induced secondary brain injury in rats by regulating the Nrf2 signaling pathway[J/OL]. Ann Transl Med,2021,9(21):1617[2023-12-01]. https://doi.org/10.21037/atm-21-1863. [25] DAI S H,HUA Y,KEEP R F,et al. Minocycline attenuates brain injury and iron overload after intracerebral hemorrhage in aged female rats[J/OL]. Neurobiol Dis,2019,126:76-84[2023-12-01]. https://doi.org/10.1016/j.nbd.2018.06.001. [26] DANG G,YANG Y F,WU G,et al. Early erythrolysis in the hematoma after experimental intracerebral hemorrhage[J]. Transl Stroke Res,2017,8(2):174-182. [27] DA SILVA S M,CAMPOS G D,GOMES F C A,et al. Radial glia-endothelial cells’ bidirectional interactions control vascular maturation and astrocyte differentiation:impact for blood-brain barrier formation[J]. Curr Neurovasc Res,2019,16(4):291-300. [28] SPENCE H,MCNEIL C J,WAITER G D. The impact of brain iron accumulation on cognition:a systematic review[J/OL]. PLoS One,2020,15(10):e0240697[2023-12-01]. https://doi.org/10.1371/journal.pone.0240697. [29] BHASIN R R,XI G,HUA Y,et al. Experimental intracerebral hemorrhage:effect of lysed erythrocytes on brain edema and blood-brain barrier permeability[J/OL]. Acta Neurochir Suppl,2002,81:249-251[2023-12-01]. https://doi.org/10.1007/978-3-7091-6738-0_65. [30] CHEN S P,LI L Z,PENG C,et al. Targeting oxidative stress and inflammatory response for blood-brain barrier protection in intracerebral hemorrhage[J]. Antioxid Redox Signal,2022,37(1/3):115-134. [31] LEE J,HYUN D H. The interplay between intracellular iron homeostasis and neuroinflammation in neurodegenerative diseases[J/OL]. Antioxidants(Basel),2023,12(4):918[2023-12-01]. https://doi.org/10.3390/antiox12040918. [32] PLAYS M,MÜLLER S,RODRIGUEZ R. Chemistry and biology of ferritin[J/OL]. Metallomics,2021,13(5):mfab021[2023-12-01]. https://doi.org/10.1093/mtomcs/mfab021. [33] FILLEBEEN C,CHARLEBOIS E,WAGNER J,et al. Transferrin receptor 1 controls systemic iron homeostasis by fine-tuning hepcidin expression to hepatocellular iron load[J]. Blood,2019,133(4):344-355. [34] HOLBEIN B E,LEHMANN C. Dysregulated iron homeostasis as common disease etiology and promising therapeutic target[J/OL]. Antioxidants(Basel),2023,12(3):671[2023-12-01]. https://doi.org/10.3390/antiox12030671. [35] 曾劲松,李弘,廖君,等. 脑泰方对脑出血急性期大鼠脑铁代谢的干预作用及神经保护机制[J]. 中医药导报,2020,26(11):27-32. ZENG J S,LI H,LIAO J,et al. Effect of naotaifang on cerebral iron metabolism and its neuroprotective mechanism in rats with acute intracerebral hemorrhage[J]. Guid J Tradit Chin Med Pharm,2020,26(11):27-32. [36] 孙玙,杨水泉,胡朝晖,等. 血清铁调素及铁代谢指标与脑出血早期病情及预后的相关性研究[J]. 中国临床解剖学杂志,2021,39(3):355-358,362. SUN Y,YANG S Q,HU Z H,et al. Research on the serum hepcidin and iron metabolism indicator in intracerebral hemorrhage and its application in assessment of early conditions and prognosis[J]. Chinese Journal of Clinical Anatomy,2021,39(3):355-358,362. [37] WARD R J,DEXTER D T,CRICHTON R R. Iron,neuroinflammation and neurodegeneration[J/OL]. Int J Mol Sci,2022,23(13):7267[2023-12-01]. https://doi.org/10.3390/ijms23137267. [38] WEN H M,TAN J Y,TIAN M,et al. TGF-β1 ameliorates BBB injury and improves long-term outcomes in mice after ICH[J/OL]. Biochem Biophys Res Commun,2023,654:136-144[2023-12-01]. https://doi.org/10.1016/j.bbrc.2023.03.007. [39] JIN J,DUAN J,DU L Y,et al. Inflammation and immune cell abnormalities in intracranial aneurysm subarachnoid hemorrhage(SAH):relevant signaling pathways and therapeutic strategies[J/OL]. Front Immunol,2022,13:1027756[2023-12-01]. https://doi.org/10.3389/fimmu.2022.1027756. [40] POPIOLEK-BARCZYK K,MIKA J. Targeting the microglial signaling pathways:new insights in the modulation of neuropathic pain[J]. Curr Med Chem,2016,23(26):2908-2928. [41] GAO G F,YOU L H,ZHANG J H,et al. Brain iron metabolism,redox balance and neurological diseases [J/OL]. Antioxidants(Basel),2023,12(6):1289 [2023-12-01]. https://doi.org/10.3390/antiox12061289. [42] URRUTIA P J,BÓRQUEZ D A,NÚÑEZ M T. Inflaming the brain with iron[J/OL]. Antioxidants(Basel),2021,10(1):61[2023-12-01]. https://doi.org/10.3390/antiox10010061. [43] GONZÁLEZ D A S,CHELI V T,WAN R S,et al. Iron metabolism in the peripheral nervous system:the role of DMT1,ferritin,and transferrin receptor in schwann cell maturation and myelination[J]. J Neurosci,2019,39(50):9940-9953. [44] BRUNO K,WOLLER S A,MILLER Y I,et al. Targeting Toll-like receptor-4(TLR4)—an emerging therapeutic target for persistent pain states[J]. Pain,2018,159(10):1908-1915. [45] KARUPPAGOUNDER V,GIRIDHARAN V V,ARUMUGAM S,et al. Modulation of macrophage polarization and HMGB1-TLR2/TLR4 cascade plays a crucial role for cardiac remodeling in senescence-accelerated prone mice[J/OL]. PLoS One,2016,11(4):e0152922[2023-12-01]. https://doi.org/10.1371/journal.pone.0152922. [46] XIONG X Y,LIU L,WANG F X,et al. Toll-like receptor 4/MyD88-mediated signaling of hepcidin expression causing brain iron accumulation,oxidative injury,and cognitive impairment after intracerebral hemorrhage[J]. Circulation,2016,134(14):1025-1038. [47] URRUTIA P J,BÓRQUEZ D A,NÚÑEZ M T. Inflaming the brain with iron[J/OL]. Antioxidants(Basel),2021,10(1):61[2023-12-01]. https://doi.org/10.3390/antiox10010061. [48] KAO J K,WANG S C,HO L W,et al. M2-like polarization of THP-1 monocyte-derived macrophages under chronic iron overload[J]. Ann Hematol,2020,99(3):431-441. [49] YU H Y,CHANG Q,SUN T,et al. Metabolic reprogramming and polarization of microglia in Parkinson’s disease:role of inflammasome and iron[J/OL]. Ageing Res Rev,2023,90:102032[2023-12-01]. https://doi.org/10.1016/j.arr.2023.102032. [50] DICKSON K B,ZHOU J. Role of reactive oxygen species and iron in host defense against infection[J]. Front Biosci(Landmark Ed),2020,25(8):1600-1616. [51] SCHIPPER H M,SONG W,TAVITIAN A,et al. The sinister face of heme oxygenase-1 in brain aging and disease[J/OL]. Prog Neurobiol,2019,172:40-70[2023-12-01]. https://doi.org/10.1016/j.pneurobio.2018.06.008. [52] FERNÁNDEZ-MENDÍVIL C,LUENGO E,TRIGO-ALONSO P,et al. Protective role of microglial HO-1 blockade in aging:implication of iron metabolism [J/OL]. Redox Biol,2021,38:101789[2023-12-01]. https://doi.org/10.1016/j.redox.2020.101789. [53] XIE Q,GU Y X,HUA Y,et al. Deferoxamine attenuates white matter injury in a piglet intracerebral hemorrhage model[J]. Stroke,2014,45(1):290-292. [54] FARR A C,XIONG M P. Challenges and opportunities of deferoxamine delivery for treatment of Alzheimer’s disease,Parkinson’s disease,and intracerebral hemorrhage[J]. Mol Pharm,2021,18(2):593-609. [55] SIRACUSA R,FUSCO R,CUZZOCREA S. Astrocytes:role and functions in brain pathologies[J/OL]. Front Pharmacol,2019,10:1114[2023-12-01]. https://doi.org/10.3389/fphar.2019.01114. [56] LIDDELOW S A,GUTTENPLAN K A,CLARKE L E,et al. Neurotoxic reactive astrocytes are induced by activated microglia[J]. Nature,2017,541(7638):481-487. [57] JUNG J E,SUN G H,BAUTISTA GARRIDO J,et al. The mitochondria-derived peptide humanin improves recovery from intracerebral hemorrhage:implication of mitochondria transfer and microglia phenotype change[J]. J Neurosci,2020,40(10):2154-2165. [58] DENG S W. AQP2 promotes astrocyte activation by modulating the TLR4/NFκB-p65 pathway following intracerebral hemorrhage[J/OL]. Front Immunol,2022,13:847360[2023-12-01]. https://doi.org/10.3389/fimmu.2022.847360. [59] LAWRENCE J M,SCHARDIEN K,WIGDAHL B,et al. Roles of neuropathology-associated reactive astrocytes:a systematic review[J/OL]. Acta Neuropathol Commun,2023,11(1):42[2023-12-01]. https://doi.org/10.1186/s40478-023-01526-9. [60] DÍAZ-CASTRO B,ROBEL S,MISHRA A. Astrocyte endfeet in brain function and pathology:open questions[J/OL]. Annu Rev Neurosci,2023,46:101-121[2023-12-01]. https://doi.org/10.1146/annurev-neuro-091922-031205. [61] DEKENS D W,DE DEYN P P,SAP F,et al. Iron chelators inhibit amyloid-β-induced production of lipocalin 2 in cultured astrocytes[J/OL]. Neurochem Int,2020,132:104607[2023-12-01]. https://doi.org/10.1016/j.neuint.2019.104607. [62] TACCOLA C,BARNEOUD P,CARTOT-COTTON S,et al. Modifications of physical and functional integrity of the blood-brain barrier in an inducible mouse model of neurodegeneration[J/OL]. Neuropharmacology,2021,191:108588[2023-12-01]. https://doi.org/10.1016/j.neuropharm.2021.108588. [63] RYAN F,ZARRUK J G,LÖßLEIN L,et al. Ceruloplasmin plays a neuroprotective role in cerebral ischemia[J/OL]. Front Neurosci,2019,12:988[2023-12-01]. https://doi.org/10.3389/fnins.2018.00988. [64] YOU L H,YU P P,DONG T Y,et al. Astrocyte-derived hepcidin controls iron traffic at the blood-brain-barrier via regulating ferroportin 1 of microvascular endothelial cells[J/OL]. Cell Death Dis,2022,13(8):667[2023-12-01]. https://doi.org/10.1038/s41419-022-05043-w. [65] CHELI V T,CORREALE J,PAEZ P M,et al. Iron metabolism in oligodendrocytes and astrocytes,implications for myelination and remyelination[J/OL]. ASN Neuro,2020,12:1759091420962681[2023-12-01]. https://doi.org/10.1177/1759091420962681. [66] ZHUO F,QIU G P,XU J,et al. Both endoplasmic reticulum and mitochondrial pathways are involved in oligodendrocyte apoptosis induced by capsular hemorrhage[J/OL]. Mol Cell Neurosci,2016,72:64-71[2023-12-01]. https://doi.org/10.1016/j.mcn.2016.01.009. [67] FU X J,ZHOU G Y,ZHUANG J F,et al. White matter injury after intracerebral hemorrhage[J/OL]. Front Neurol,2021,12:562090[2023-12-01]. https://doi.org/10.3389/fneur.2021.562090. [68] LI J,XIAO L L,HE D,et al. Mechanism of white matter injury and promising therapeutic strategies of MSCs after intracerebral hemorrhage[J/OL]. Front Aging Neurosci,2021,13:632054[2023-12-01]. https://doi.org/10.3389/fnagi.2021.632054. [69] IMAI T,MATSUBARA H,HARA H. Potential therapeutic effects of Nrf2 activators on intracranial hemorrhage[J]. J Cereb Blood Flow Metab,2021,41(7):1483-1500. [70] NOBUTA H,YANG N,NG Y H,et al. Oligodendrocyte death in Pelizaeus-Merzbacher disease is rescued by iron chelation[J/OL]. Cell Stem Cell,2019,25(4):531-541,e6[2023-12-01]. https://doi.org/10.1016/j.stem.2019.09.003. |
[1] | 李阳阳, 方建, 王晓雪. 和厚朴酚调节BDNF-TrkB-CREB信号通路对脑出血小鼠神经损伤和认知功能的影响[J]. 中国卒中杂志, 2024, 19(9): 1048-1057. |
[2] | 李月容, 秦秀德, 党朝晖, 陆韵薇, 蔡甜甜, 蔡浩斌, 卜凡. 小胶质细胞对卒中后中枢性疼痛调节机制的研究进展 [J]. 中国卒中杂志, 2024, 19(8): 967-972. |
[3] | 赵岩, 姚婧鑫, 彭宇明. 老年开颅肿瘤切除患者围手术期同时并发缺血性卒中及脑出血报道 [J]. 中国卒中杂志, 2024, 19(7): 797-802. |
[4] | 李之明, 王孜杰, 李琦. 2024美国卒中学会Code ICH脑出血早期一体化诊治方案专家共识解读[J]. 中国卒中杂志, 2024, 19(6): 714-724. |
[5] | 李晨红, 姜晨黎, 王金慧, 黄晟. 脑出血患者微创颅内血肿清除术后肺部感染的影响因素分析及预测模型构建[J]. 中国卒中杂志, 2024, 19(5): 532-538. |
[6] | 丁则昱, 姬泽强, 吴建维, 康开江, 赵性泉. 幕上高血压性脑出血微创颅内血肿抽吸引流术后早期神经功能恶化危险因素分析[J]. 中国卒中杂志, 2024, 19(5): 545-551. |
[7] | 张青, 王旭, 张庆. 原发性延髓“心”形出血1例报道[J]. 中国卒中杂志, 2024, 19(2): 197-201. |
[8] | 李达宇, 郭少雷, 张波, 黄志鹏, 叶巍巍, 姚亮. 盐酸戊乙奎醚对脑出血大鼠血脑屏障及脑组织ROCK2、CLDN5和AQP-4表达的影响[J]. 中国卒中杂志, 2024, 19(10): 1180-1187. |
[9] | 国家神经系统疾病医疗质量控制中心脑血管病质控专病组, 中国卒中学会医疗质量管理与促进分会. 脑出血医疗质量控制指标[J]. 中国卒中杂志, 2024, 19(1): 44-49. |
[10] | 王晶, 李子孝, 董强, 赵性泉. 《脑出血医疗质量控制指标》的解读[J]. 中国卒中杂志, 2024, 19(1): 50-54. |
[11] | 张谦, 冀瑞俊, 赵萌, 王文娟, 陆菁菁, 李娜, 刘艳芳, 边立衡, 于嵩林, 李昊, 张倩, 吴建维, 王丹丹, 王晶, 李朝霞, 姜睿璇, 康开江, 薛艺萌, 押小龙, 何蕲恒, 莫少华, 赵性泉, 赵继宗, 中国卒中学会中国脑血管病临床管理指南撰写工作委员会(第一作者). 中国脑血管病临床管理指南(第2版)(节选)——第5章 脑出血临床管理[J]. 中国卒中杂志, 2023, 18(9): 1014-1023. |
[12] | 方晓萌, 袁巧玲, 王硕. 严重自发性脑出血患者术后下肢深静脉血栓形成的危险因素分析[J]. 中国卒中杂志, 2023, 18(8): 891-897. |
[13] | 李光硕, 赵性泉. 英国国家卒中临床指南2023版要点及解读——出血性卒中[J]. 中国卒中杂志, 2023, 18(12): 1365-1369. |
[14] | 吴娜, 王利圆, 李光硕, 熊云云. 英国国家卒中临床指南2023版要点及解读——长期管理与二级预防[J]. 中国卒中杂志, 2023, 18(12): 1383-1390. |
[15] | 孔德敏, 邹伟. 脑出血后小胶质细胞极化及其相关炎症信号通路对继发性脑损伤的影响[J]. 中国卒中杂志, 2023, 18(11): 1315-1323. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||