中国卒中杂志 ›› 2025, Vol. 20 ›› Issue (12): 1518-1526.DOI: 10.3969/j.issn.1673-5765.2025.12.007

• 论著 • 上一篇    下一篇

急性缺血性卒中患者就医决策延迟列线图预测模型的构建与验证

班悦1,胡敏莉1,李芝慧1,邓丽萍2,谢小华1   

  1. 1 合肥 230032 安徽医科大学护理学院
    2 深圳市第二人民医院护理部
  • 收稿日期:2025-08-12 修回日期:2025-12-01 接受日期:2025-12-05 出版日期:2025-12-20 发布日期:2025-12-20
  • 通讯作者: 谢小华 13560779836@163.com
  • 基金资助:
    2023年度深圳市科技计划基础研究面上项目(JCYJ20230807115119040)
    深圳市‘医疗卫生三名工程’项目资助(SZSM202111014)
    广东省岭南南丁格尔护理研究院、广东省护理学会2024年度护理创新发展研究课题重大项目(GDHLYJYZ202408)
    2025年度安徽医科大学护理学院研究生青苗培育项目(Hlqm12025074)

Construction and Validation of a Nomogram Prediction Model for Medical Decision-Making Delay in Patients with Acute Ischemic Stroke

BAN Yue1, HU Minli1, LI Zhihui1, DENG Liping2, XIE Xiaohua1   

  1. 1 School of Nursing, Anhui Medical University, Hefei 230032, China
    2 Department of Nursing, Shenzhen Second People’s Hospital, Shenzhen 518035, China
  • Received:2025-08-12 Revised:2025-12-01 Accepted:2025-12-05 Online:2025-12-20 Published:2025-12-20
  • Contact: XIE Xiaohua, E-mail: 13560779836@163.com

摘要: 目的 探讨急性缺血性卒中(acute ischemic stroke,AIS)患者就医决策延迟的重要危险因素,构建列线图预测模型,为早期识别就医决策延迟高风险患者提供个体化评估工具。
方法 前瞻性纳入2024年9月—2025年4月深圳市3家医院的AIS患者,根据其症状出现或被识别至首次决定寻求医疗帮助的时间间隔分为延迟组(>1 h)与未延迟组(≤1 h)。采用多因素logistic回归分析识别就医决策延迟的独立影响因素,并构建列线图预测模型。通过ROC曲线、Hosmer-Lemeshow拟合优度检验、校准曲线及决策曲线分析评估模型性能。 
结果 本研究共纳入344例AIS患者,其中发生就医决策延迟的患者201例。多因素logistic回归分析结果显示,延迟组患者的平均年龄更小(OR 2.303,95%CI 1.201~4.416,P=0.012)、受教育程度更低(OR 3.908,95%CI 1.460~10.463,P=0.007)、有糖尿病病史的比例更高(OR 1.923,95%CI 1.054~3.509,P=0.033)、发病时NIHSS评分更低(OR 3.245,95%CI 1.700~6.191,P<0.001)、卒中了解程度为不清楚的比例更高(OR 3.262,95%CI 1.247~8.532,P=0.016),以及倾向采取消极应对方式的比例更高(OR 11.436,95%CI 6.069~21.550,P<0.001)。基于上述6项影响因素构建的列线图预测模型的AUC为0.861(95%CI 0.820~0.902);Hosmer-Lemeshow拟合优度检验显示模型拟合良好(χ2=8.064,P=0.427);校准曲线显示模型预测值与观察值一致性较高;决策曲线分析表明模型在较宽风险阈值范围内具有较高的临床净收益。
结论 以年龄、受教育程度、糖尿病病史、发病时NIHSS评分、卒中了解程度和疾病应对方式为核心变量构建的列线图预测模型,可作为临床评估AIS患者就医决策延迟风险的有效预测工具。

文章导读: AIS患者的就医决策延迟是导致院前延迟的重要因素。为此,本研究构建了列线图预测模型。经验证,该模型具有良好的判别力、校准度与临床适用性,可作为AIS患者就医决策延迟风险的早期筛查工具,辅助临床医务人员在高危人群筛查、社区预防及复发管理等阶段,快速识别就医决策延迟高风险个体,从而实施针对性早期干预。

关键词: 急性缺血性卒中; 就医决策延迟; 列线图; 预测模型

Abstract: Objective  To explore the important risk factors of medical decision-making delay in patients with acute ischemic stroke (AIS) and construct a nomogram prediction model, aiming to provide an individualized assessment tool for early identification of high-risk patients with medical decision-making delay.
Methods  AIS patients admitted to three hospitals in Shenzhen between September 2024 and April 2025 were prospectively enrolled. Patients were divided into a delay group (>1 h) and a non-delay group (≤1 h) based on the time interval from symptom onset or recognition to the first decision to seek medical help. Multivariate logistic regression analysis was used to identify independent influencing factors of medical decision-making delay, and a nomogram prediction model was constructed. The model performance was evaluated using ROC curves, Hosmer-Lemeshow goodness of fitting test, calibration curves, and decision curve analysis. 
Results  A total of 344 AIS patients were enrolled in this study, among whom 201 had medical decision-making delay. Multivariate logistic regression analysis showed that compared with the non-delay group, patients in the delay group had a younger mean age (OR 2.303, 95%CI 1.201-4.416, P=0.012), lower educational level (OR 3.908, 95%CI 1.460-10.463, P=0.007), higher proportion of diabetes mellitus history (OR 1.923, 95%CI 1.054-3.509, P=0.033), lower NIHSS scores at onset (OR 3.245, 95%CI 1.700-6.191, P<0.001), higher proportion of poorer understanding of stroke (OR 3.262, 95%CI 1.247-8.532, P=0.016), and higher proportion of tendency to adopt negative coping style (OR 11.436, 95%CI 6.069-21.550, P<0.001). The AUC of the nomogram prediction model constructed based on these six factors was 0.861 (95%CI 0.820-0.902). The Hosmer-Lemeshow goodness of fitting test indicated that the model had a good fit (χ²=8.064, P=0.427). The calibration curves showed a high degree of consistency between the predicted values and observed values of the model. Decision curve analysis showed that the model yielded a high clinical net benefit within a wide range of risk thresholds.
Conclusions  The nomogram prediction model constructed with age, educational level, history of diabetes mellitus, NIHSS score at onset, understanding of stroke, and disease coping style as core variables can serve as a valid predictive tool for clinically assessing the risk of medical decision-making delay in patients with AIS.

Key words: Acute ischemic stroke; Medical decision-making delay; Nomogram; Prediction model

中图分类号: