卒中杂志 ›› 2012, Vol. 7 ›› Issue (12): 941-947.
林真珍,王柳清,邵蓓
收稿日期:
2012-02-11
出版日期:
2012-12-20
发布日期:
2012-12-20
基金资助:
出血性脑卒中大鼠hNSCs脑内移植后新生血管生成与运动功能恢复之机制研究——国家自然基金(2011,81171088)
Received:
2012-02-11
Online:
2012-12-20
Published:
2012-12-20
林真珍,王柳清,邵蓓. 缺血性卒中后血管新生的细胞和分子调节机制[J]. 卒中杂志, 2012, 7(12): 941-947.
LIN Zhen-Zhen,WANG Liu-Ling,SHAO Bei,. Cellular and Molecular Mechanisms Underlying Regulation of Angiogenesis after Ischemic Stroke[J]. Chinese Journal of Stroke, 2012, 7(12): 941-947.
1 Lain W, Graham L. Essential Neurology[M]. Oxford:Blackwell Publishing Ltd, 2005:25-26.2 Font MA, Arboix A, Krupinski J. Angiogenesis, neurogenesis and neuroplasticity in ischemic stroke[J]. Curr Cardiol Rev, 2010, 6:238-244.3 Lafuente JV, Ortuzar N, Bengoetxea H, et al. Vascular endothelial growth factor and other angioglioneurins:key molecules in brain development and restoration[J]. Int Rev Neurobiol, 2012, 102:317-346.4 Pettersson A, Nagy JA, Brown LF, et al. Heterogeneity of the angiogenic response induced in different normal adult tissues by vascular permeability factor/vascular endothelial growth factor[J]. Lab Invest, 2000, 80:99-115.5 Sun Y, Jin K, Xie L, et al. VEGF-induced neuroprotection, neurogenesis, and angiogenesis after focal cerebral ischemia[J]. J Clin Invest, 2003, 111:1843-1851.6 Jin K, Zhu Y, Sun Y, et al. Vascular endothelial growth factor(VEGF) stimulates neurogenesis in vitro and in vivo[J]. Proc Natl Acad Sci USA, 2002, 99:11946-11950.7 Zhang ZG, Zhang L, Jiang Q, et al. VEGF enhances angiogenesis and promotes blood-brain barrier leakage in the ischemic brain[J]. J Clin Invest, 2000, 106:829-838.8 Margaritescu O, Margaritescu C, Piric D. VEGF expression in human brain tissue after acute ischemic stroke[J]. Rom J Morphol Embryol, 2011, 52:1283-1292.9 van Bruggen N, Thibodeaux H, Palmer JT, et al. VEGF antagonism reduces edema formation and tissue damage after ischemia/reperfusion injury in the mouse brain[J]. J Clin Invest, 1999, 104:1613-1620.10 Marti H J, Bernaudin M, Bellail A, et al. Hypoxia-induced vascular endothelial growth factor expression precedes neovascularization after cerebral ischemia[J]. Am J Pathol, 2000, 156:965-976.11 Ingraham JP, Forbes ME, Riddle DR, et al. Aging reduces hypoxia-induced microvascular growth in the rodent hippocampus[J]. J Gerontol A Biol Sci Med Sci, 2008, 63:12-20.12 Rivard A, Berthou-Soulie L, Principe N, et al. Age-dependent defect in vascular endothelial growth factor expression is associated with reduced hypoxia-inducible factor 1 activity[J]. J Biol Chem, 2000, 275:29643-29647.13 Emerich DF, Schneider P, Bintz B, et al. Aging reduces the neuroprotective capacity, VEGF secretion, and metabolic activity of rat choroid plexus epithelial cells[J]. Cell Transplant, 2007, 16:697-705.14 Gao P, Shen F, Gabriel RA, et al. Attenuation of brain response to vascular endothelial growth factor-mediated angiogenesis and neurogenesis in aged mice[J]. Stroke, 2009, 40:3596-3600.15 Sonntag WE, Lynch CD, Cooney PT, et al. Decreases in cerebral microvasculature with age are associated with the decline in growth hormone and insulin-like growth factor 1[J]. Endocrinology, 1997, 138:3515-3520.16 Cheng J, Liu J, Li X, et al. Insulin-like growth factor-1 receptor polymorphism and ischemic stroke:a case-control study in Chinese population[J]. Acta Neurol Scand, 2008, 118:333-338.17 Denti L, Annoni V, Cattadori E, et al. Insulin-like growth factor 1 as a predictor of ischemic stroke outcome in the elderly[J]. Am J Med, 2004, 117:312-317.18 De Smedt A, Brouns R, Uyttenboogaart M, et al. Insulin-like growth factor I serum levels influence ischemic stroke outcome[J]. Stroke, 2011, 42:2180-2185.19 Zhu W, FanY F, Hao Q, et al. Postischemic IGF-1 gene transfer promotes neurovascular regeneration after experimental stroke[J]. J Cereb Blood Flow Metab, 2009, 29:1528-1537.20 Gospodarowicz D. Expression and control of vascular endothelial cells:proliferation and differentiation by fibroblast growth factors[J]. J Invest Dermatol, 1989, 93:39S-47S.21 Cheng X, Wang Z, Yang J, et al. Acidic fibroblast growth factor delivered intranasally induces neurogenesis and angiogenesis in rats after ischemic stroke[J]. Neurol Res, 2011, 33:675-680.22 Gabra N, Khayat A, Calabresi P, et al. Detection of elevated basic fibroblast growth factor during early hours of in vitro angiogenesis using a fast ELISA immunoassay[J]. Biochem Biophys Res Commun, 1994, 205:1423-1430.23 Issa R, Alqteishat A, Mitsios N, et al. Expression of basic fibroblast growth factor mRNA and protein in the human brain following ischaemic stroke[J]. Angiogenesis, 2005, 8:53-62.24 Won SJ, Xie L, Kim SH, et al. Influence of age on the response to fibroblast growth factor-2 treatment in a rat model of stroke[J]. Brain Res, 2006, 1123:234-244.25 Lee SW, Kim WJ, Jun HO, et al. Angiopoietin-1 reduces vascular endothelial growth factor-induced brain endothelial permeability via upregulation of ZO-2[J]. Int J Mol Med, 2009, 23:279-284. 26 Baffert F, Le T, Thurston G, et al. Angiopoietin-1 decreases plasma leakage by reducing number and size of endothelial gaps in venules[J]. Am J Physiol Heart Circ Physiol, 2006, 290:H107-118.27 Zhao Y, Li Z, Wang R, et al. Angiopoietin 1 counteracts vascular endothelial growth factor-induced blood-brain barrier permeability and alleviates ischemic injury in the early stages of transient focal cerebral ischemia in rats[J]. Neurol Res, 2010, 32:748-55.28 Shen F, Walker FJ, Jiang L, et al. Coexpression of angiopoietin-1 with VEGF increases the structural integrity of the blood-brain barrier and reduces atrophy volume[J]. J Cereb Blood Flow Metab, 2011, 31:2343-2351.29 Hansen TM, Moss AJ, Brindle NP. Vascular endothelial growth factor and angiopoietins in neurovascular regeneration and protection following stroke[J]. Curr Neurovasc Res, 2008, 5:236-245.30 Chen J, Yu H, Song W, et al. Angiopoietin-2 promoter haplotypes confer an increased risk of stroke in a Chinese Han population[J]. Clin Sci(Lond), 2009, 117:387-395.31 Lin TN, Wang CK, Cheung WM, et al. Induction of angiopoietin and Tie receptor mRNA expression after cerebral ischemia-reperfusion[J]. J Cereb Blood Flow Metab, 2000, 20:387-395.32 Lacombe C, Mayeux P. Biology of erythropoietin[J]. Haematologica, 1998, 83:724-732.33 Buemi M, Cavallaro E, Floccari F, et al. The pleiotropic effects of erythropoietin in the central nervous system[J]. J Neuropathol Exp Neurol, 2003, 62:228-236.34 Bikfalvi A, Han ZC. Angiogenic factors are hematopoietic growth factors and vice versa[J]. Leukemia, 1994, 8:523-529.35 Pelletier L, Regnard J, Fellmann D, et al. An in vitro model for the study of human bone marrow angiogenesis:role of hematopoietic cytokines[J]. Lab Invest, 2000, 80:501-511.36 Ribatti D, Vacca A, Roncali L, et al. Hematopoiesis and angiogenesis:a link between two apparently independent processes[J]. J Hematother Stem Cell Res, 2000, 9:13-19.37 Sirén AL, Knerlich F, Poser W, et al. Erythropoietin and erythropoietin receptor in human ischemic/hypoxic brain[J]. Acta Neuropathol, 2001, 101:271-276.38 Li L, Jiang Q, Ding G, et al. MRI identification of white matter reorganization enhanced by erythropoietin treatment in a rat model of focal ischemia[J]. Stroke, 2009, 40:936-941.39 Ding G, Jiang Q, Li L, et al. Cerebral tissue repair and atrophy after embolic stroke in rat:a magnetic resonance imaging study of erythropoietin therapy[J]. J Neurosci Res, 2010, 88:3206-3214.40 Chen ZY, Hendriks RW, Jobling MA, et al. Isolation and characterization of a candidate gene for Norrie disease[J]. Nat Genet, 1992, 1:204-208.41 Rehm HL, Zhang DS, Brown MC, et al. Vascular defects and sensorineural deafness in a mouse model of Norrie disease[J]. J Neurosci, 2002, 22:4286-4292.42 Hsieh M, Boerboom D, Shimada M, et al. Mice null for Frizzled4(Fzd4-/-) are infertile and exhibit impaired corpora lutea formation and function[J]. Biol Reprod, 2005, 73:1135-1146.43 Luhmann UF, Meunier D, Shi W, et al. Fetal loss in homozygous mutant Norrie disease mice:a new role of Norrin in reproduction[J]. Genesis, 2005, 42:253-262.44 Daneman R, Agalliu D, Zhou L, et al. Wnt/beta-catenin signaling is required for CNS, but not non-CNS, angiogenesis[J]. Proc Natl Acad Sci USA, 2009, 106:641-646.45 Liebner S, Corada M, Bangsow T, et al. Wnt/beta-catenin signaling controls development of the blood-brain barrier[J]. J Cell Biol, 2008, 183:409-417.46 Stenman JM, Rajagopal J, Carroll TJ, et al. Canonical Wnt signaling regulates organ-specific assembly and differentiation of CNS vasculature[J]. Science, 2008, 322:1247-1250.47 Goodwina M, Kitajewski J, D'amore PA. Wnt1 and Wnt5a affect endothelial proliferation and capillary length; Wnt2 does not[J]. Growth Factors, 2007, 25:25-32.48 Zerlin M, Julius MA, Kitajewski J. Wnt/Frizzled signaling in angiogenesis[J]. Angiogenesis, 2008, 11:63-69.49 Cirone P, Lin S, Griesbach HL, et al. A role for planar cell polarity signaling in angiogenesis[J]. Angiogenesis, 2008, 11:347-360.50 Hellstrom M, Phng LK, Hofmann JJ, et al. Dll4 signalling through Notch1 regulates formation of tip cells during angiogenesis[J]. Nature, 2007, 445:776-780.51 Hofmann JJ, Luisa Iruela-Arispe M. Notch expression patterns in the retina:An eye on receptor-ligand distribution during angiogenesis[J]. Gene Expr Patterns, 2007, 7:461-470.52 Benedito R, Roca C, Sorensen I, et al. The notch ligands Dll4 and Jagged1 have opposing effects on angiogenesis[J]. Cell, 2009, 137:1124-1135.53 Roca C, Adams RH. Regulation of vascular morphogenesis by Notch signaling[J]. Genes Dev, 2007, 21:2511-2524.54 Sainson RC, Aoto J, Nakatsu MN, et al. Cell-autonomous notch signaling regulates endothelial cell branching and proliferation during vascular tubulogenesis[J]. FASEB J, 2005, 19:1027-1029.55 Suchting S, Freitas C, Le Noble F, et al. The Notch ligand Delta-like 4 negatively regulates endothelial tip cell formation and vessel branching[J]. Proc Natl Acad Sci USA, 2007, 104:3225-3230.56 Williams CK, Li JL, Murga M, et al. Up-regulation of the Notch ligand Delta-like 4 inhibits VEGF-induced endothelial cell function[J]. Blood, 2006, 107:931-939.57 Leslie JD, Ariza-Mcnaughton L, Bermange AL, et al. Endothelial signalling by the Notch ligand Delta-like 4 restricts angiogenesis[J]. Development, 2007, 134:839-844.58 Stoltz JF, Muller S, Kadi A, et al. Introduction to endothelial cell biology[J]. Clin Hemorheol Microcirc, 2007, 37(1-2):5-8.59 Asahara T, Murohara T, Sullivan A, et al. Isolation of putative progenitor endothelial cells for angiogenesis[J]. Science, 1997, 275(5302):964-967.60 Teng H, Zhang ZG, Wang L, et al. Coupling of angiogenesis and neurogenesis in cultured endothelial cells and neural progenitor cells after stroke[J]. J Cereb Blood Flow Metab, 2008, 28:764-771.61 Chen J, Sanberg PR, Li Y, et al. Intravenous administration of human umbilical cord blood reduces behavioral deficits after stroke in rats[J]. Stroke, 2001, 32:2682-2688.62 Taguchi A, Soma T, Tanaka H, et al. Administration of CD34+ cells after stroke enhances neurogenesis via angiogenesis in a mouse model[J]. J Clin Invest, 2004, 114:330-338.63 Hess DC, Hill WD, Martin-Studdard A, et al. Bone marrow as a source of endothelial cells and NeuN-expressing cells After stroke[J]. Stroke, 2002, 33:1362-1368.64 Asahara T, Masuda H, Takahashi T, et al. Bone marrow origin of endothelial progenitor cells responsible for postnatal vasculogenesis in physiological and pathological neovascularization[J]. Circ Res, 1999, 85:221-228.65 Sobrino T, Hurtado O, Moro MA, et al. The increase of circulating endothelial progenitor cells after acute ischemic stroke is associated with good outcome[J]. Stroke, 2007, 38:2759-2764.66 Yip HK, Chang LT, Chang WN, et al. Level and value of circulating endothelial progenitor cells in patients after acute ischemic stroke[J]. Stroke, 2008, 39:69-74.67 Ferrara N, Alitalo K. Clinical applications of angiogenic growth factors and their inhibitors[J]. Nat Med, 1999, 5:1359-1364.68 Simons M. Angiogenesis:where do we stand now?[J]. Circulation, 2005, 111:1556-1566. |
[1] | 曹黎明, 任力杰. 急性缺血性卒中诊疗技术的进展与展望[J]. 中国卒中杂志, 2024, 19(9): 983-989. |
[2] | 符鹏程, 曹黎明, 朱佳倩, 赵桂玉, 徐格林. 大动脉粥样硬化性缺血性卒中再灌注治疗的研究进展[J]. 中国卒中杂志, 2024, 19(9): 1004-1011. |
[3] | 张丽苹, 曹黎明, 肖楠, 廖雨琦, 池枫, 余艳妮, 任力杰. 纳米材料在缺血性卒中诊疗中的研究进展及挑战[J]. 中国卒中杂志, 2024, 19(9): 1012-1017. |
[4] | 王晓蕊, 骆嵩, 邹良玉, 屈洪党, 崔雪, 赵玉洁. 嗜酸性粒细胞与单核细胞比值预测急性缺血性卒中患者静脉溶栓预后的价值研究 [J]. 中国卒中杂志, 2024, 19(9): 1025-1033. |
[5] | 王铄, 余苹, 张宁, 王春雪. 2013—2023年缺血性卒中与睡眠相关性研究的文献计量学分析 [J]. 中国卒中杂志, 2024, 19(9): 1040-1047. |
[6] | 周宏宇, 李子孝, 王拥军. 基于影像组学预测大脑年龄与缺血性卒中的研究进展[J]. 中国卒中杂志, 2024, 19(9): 1066-1076. |
[7] | 阿娜古丽·阿不拉尼压孜, 吴晓欣, 李骄星, 李竹浩, 盛文利. 急性缺血性卒中磁敏感血管征影响因素及临床应用的研究进展[J]. 中国卒中杂志, 2024, 19(9): 1077-1085. |
[8] | 杨金波, 张聪. 高分辨率血管壁成像在缺血性卒中患者中的应用进展[J]. 中国卒中杂志, 2024, 19(9): 1086-1093. |
[9] | 吴春艳, 尹雅诗, 王广志, 岳奎涛. 急性缺血性卒中不同时间窗影像学评价及应用进展[J]. 中国卒中杂志, 2024, 19(9): 1094-1101. |
[10] | 张梦若, 徐守臣, 隋翠翠, 李玉奎, 王雪莉. 下肢康复机器人联合头针治疗对老年缺血性卒中患者步行效率和协调功能影响调查 [J]. 中国卒中杂志, 2024, 19(8): 902-908. |
[11] | 吴娱倩, 张玉梅, 臧大维, 范小伟, 王安心, 张晓丽, 孟霞. 上肢动作研究测试量表评定亚急性期缺血性卒中患者偏瘫侧上肢及手功能的信效度和敏感性研究 [J]. 中国卒中杂志, 2024, 19(8): 915-923. |
[12] | 莫秋红, 丁晓波, 李靓, 张岩波, 李伟荣. 基于可解释性机器学习模型的轻型缺血性卒中复发预测研究[J]. 中国卒中杂志, 2024, 19(8): 924-930. |
[13] | 逯丹, 陈玮琪, 王雅平, 段婉莹, 郭蕾, 王玲, 刘丽萍, 徐安定, 王拥军, 中国卒中学会脑保护圆桌会学术委员会. 缺血性卒中脑细胞保护科学声明——来自中国卒中学会的科学声明 [J]. 中国卒中杂志, 2024, 19(8): 938-955. |
[14] | 李光硕, 赵性泉. 《中国急性缺血性卒中诊治指南2023》解读[J]. 中国卒中杂志, 2024, 19(8): 956-961. |
[15] | 白磊鹏, 罗杰, 周思捷, 黄健辉, 梁铭钦, 赵庆顺. 肺叶楔形切除术后并发急性缺血性卒中行介入取栓治疗2例并文献回顾 [J]. 中国卒中杂志, 2024, 19(8): 962-966. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||