Chinese Journal of Stroke ›› 2022, Vol. 17 ›› Issue (11): 1163-1170.DOI: 10.3969/j.issn.1673-5765.2022.11.002
Previous Articles Next Articles
YI Luo, ZHOU Hongyu, QIU Xin, LI Zixiao, WANG Yongjun
Received:
2022-06-28
Online:
2022-11-20
Published:
2022-11-20
伊珞, 周宏宇, 仇鑫, 李子孝, 王拥军
1 北京 100070 首都医科大学附属北京天坛医院神经病学中心
2 国家神经系统疾病临床医学研究中心
3 北京脑科学与类脑研究中心
4 国家神经系统疾病医疗质量控制中心
通讯作者:
王拥军 yongjunwang@ncrcnd.org.cn
基金资助:
国家自然科学基金项目(82171270;92046016)
北京市自然科学基金项目(Z200016)
中国医学科学院医学与健康科技创新工程项目(2019-I2M-5-029)
YI Luo, ZHOU Hongyu, QIU Xin, LI Zixiao, WANG Yongjun. DNA Methylation Changes in Atherosclerotic Diseases [J]. Chinese Journal of Stroke, 2022, 17(11): 1163-1170.
伊珞, 周宏宇, 仇鑫, 李子孝, 王拥军. 动脉粥样硬化性疾病的DNA甲基化改变[J]. 中国卒中杂志, 2022, 17(11): 1163-1170.
[1] RADER D J,DAUGHERTY A. Translating molecular discoveries into new therapies for atherosclerosis[J]. Nature,2008,451(7181):904-913. [2] TABAS I,GARCÍA-CARDEÑA G,OWENS G K. Recent insights into the cellular biology of atherosclerosis[J]. J Cell Biol,2015,209(1):13-22. [3] VERGALLO R,CREA F. Atherosclerotic plaque healing[J]. N Engl J Med,2020,383(9):846-857. [4] KHYZHA N,ALIZADA A,WILSON M D,et al. Epigenetics of atherosclerosis:emerging mechanisms and methods[J]. Trends Mol Med,2017,23(4):332-347. [5] RIZZACASA B,AMATI F,ROMEO F,et al. Epigenetic modification in coronary atherosclerosis:JACC review topic of the week[J]. J Am Coll Cardiol,2019,74(10):1352-1365. [6] KHAN A W,PANENI F,JANDELEIT-DAHM K A M. Cell-specific epigenetic changes in atherosclerosis[J]. Clin Sci(Lond),2021,135(9):1165-1187. [7] NAPOLI C,PAOLISSO G,CASAMASSIMI A,et al. Effects of nitric oxide on cell proliferation:novel insights[J]. J Am Coll Cardiol,2013,62(2):89-95. [8] THIJSSEN D H J,BRUNO R M,VAN MIL A C C M,et al. Expert consensus and evidence-based recommendations for the assessment of flow-mediated dilation in humans[J]. Eur Heart J,2019,40(30):2534-2547. [9] LIBBY P. The changing landscape of atherosclerosis[J]. Nature,2021,592(7855):524-533. [10] DUNN J,QIU H,KIM S,et al. Flow-dependent epigenetic DNA methylation regulates endothelial gene expression and atherosclerosis[J]. J Clin Invest,2014,124(7):3187-3199. [11] YANG Q,LI X H,LI R Q,et al. Low shear stress inhibited endothelial cell autophagy through TET2 downregulation[J]. Ann Biomed Eng,2016,44(7):2218-2227. [12] KU K H,DUBINSKY M K,SUKUMAR A N,et al. In vivo function of flow-responsive Cis-DNA elements of eNOS gene:a role for chromatin-based mechanisms[J]. Circulation,2021,144(5):365-381. [13] ZHANG Y P,HUANG Y T,HUANG T S,et al. The mammalian target of rapamycin and DNA methyltransferase 1 axis mediates vascular endothelial dysfunction in response to disturbed flow[J/OL]. Sci Rep,2017,7(1):14996[2022-06-16]. https://doi.org/10.1038/s41598-017-15387-5. [14] METHORST R,PASTERKAMP G,VAN DER LAAN S W. Exploring the causal inference of shear stress associated DNA methylation in carotid plaque on cardiovascular risk [J/OL]. Atherosclerosis,2021,325:30-37[2022-06-16]. https://doi.org/10.1016/j.atherosclerosis.2021.03.043. [15] JIANG Y Z,JIMÉNEZ J M,OU K,et al. Hemodynamic disturbed flow induces differential DNA methylation of endothelial kruppel-like factor 4 promoter in vitro and in vivo[J]. Circ Res,2014,115(1):32-43. [16] XIAO Y J,XIA J J,CHENG J Q,et al. Inhibition of S-adenosylhomocysteine hydrolase induces endothelial dysfunction via epigenetic regulation of p66shc-mediated oxidative stress pathway[J]. Circulation,2019,139(19):2260-2277. [17] LIU Y X,TIAN X X,LIU S,et al. DNA hypermethylation:a novel mechanism of CREG gene suppression and atherosclerogenic endothelial dysfunction[J/OL]. Redox Biol,2020,32:101444[2022-06-16]. https://doi.org/10.1016/j.redox.2020.101444. [18] BASATEMUR G L,JØRGENSEN H F,CLARKE M C H,et al. Vascular smooth muscle cells in atherosclerosis[J]. Nat Rev Cardiol,2019,16(12):727-744. [19] LIU R,JIN Y,TANG W H,et al. Ten-eleven translocation-2(TET2)is a master regulator of smooth muscle cell plasticity[J]. Circulation,2013,128(18):2047-2057. [20] SHANKMAN L S,GOMEZ D,CHEREPANOVA O A,et al. KLF4-dependent phenotypic modulation of smooth muscle cells has a key role in atherosclerotic plaque pathogenesis[J]. Nat Med,2015,21(6):628-637. [21] LACOLLEY P,REGNAULT V,SEGERS P,et al. Vascular smooth muscle cells and arterial stiffening:relevance in development,aging,and disease[J]. Physiol Rev,2017,97(4):1555-1617. [22] ZHUANG J H,LUAN P P,LI H L,et al. The yin-yang dynamics of DNA methylation is the key regulator for smooth muscle cell phenotype switch and vascular remodeling[J]. Arterioscler Thromb Vasc Biol,2017,37(1):84-97. [23] STRAND K A,LU S,MUTRYN M F,et al. High throughput screen identifies the DNMT1(DNA methyltransferase-1)inhibitor,5-azacytidine,as a potent inducer of PTEN(phosphatase and tensin homolog):central role for PTEN in 5-azacytidine protection against pathological vascular remodeling[J]. Arterioscler Thromb Vasc Biol,2020,40(8):1854-1869. [24] JEONG K,MURPHY J M,KIM J H,et al. FAK activation promotes SMC dedifferentiation via increased DNA methylation in contractile genes[J/OL]. Circ Res,2021,129(12):e215-e233[2022-06-16]. https://doi.org/10.1161/CIRCRESAHA.121.319066. [25] MOORE K J,SHEEDY F J,FISHER E A. Macrophages in atherosclerosis:a dynamic balance[J]. Nat Rev Immunol,2013,13(10):709-721. [26] KASIKARA C,DORAN A C,CAI B,et al. The role of non-resolving inflammation in atherosclerosis[J]. J Clin Invest,2018,128(7):2713-2723. [27] JIN F Y,LI J,GUO J F,et al. Targeting epigenetic modifiers to reprogramme macrophages in non-resolving inflammation-driven atherosclerosis[J/OL]. Eur Heart J Open,2021,1(2):oeab022[2022-06-16]. https://doi.org/10.1093/ehjopen/oeab022. [28] XIA Z Y,GU M L,JIA X D,et al. Integrated DNA methylation and gene expression analysis identifies SLAMF7 as a key regulator of atherosclerosis[J]. Aging(Albany NY),2018,10(6):1324-1337. [29] BARRETT T J. Macrophages in atherosclerosis regression[J]. Arterioscler Thromb Vasc Biol,2020,40(1):20-33. [30] YU J,QIU Y Z,YANG J,et al. DNMT1-PPARγ pathway in macrophages regulates chronic inflammation and atherosclerosis development in mice[J/OL]. Sci Rep,2016,6:30053[2022-06-16]. https://doi.org/10.1038/srep30053. [31] TANG R Z,ZHU J J,YANG F F,et al. DNA methyltransferase 1 and Krüppel-like factor 4 axis regulates macrophage inflammation and atherosclerosis[J/OL]. J Mol Cell Cardiol,2019,128:11-24[2022-06-16]. https://doi.org/10.1016/j.yjmcc.2019.01.009. [32] FUSTER J J,MACLAUCHLAN S,ZURIAGA M A,et al. Clonal hematopoiesis associated with TET2 deficiency accelerates atherosclerosis development in mice[J]. Science,2017,355(6327):842-847. [33] ZHANG Y N,GUO Z Z,WU T W,et al. SULT2B1b inhibits reverse cholesterol transport and promotes cholesterol accumulation and inflammation in lymphocytes from AMI patients with low LDL-C levels[J]. Clin Sci(Lond),2020,134(2):273-287. [34] LIU Y,REYNOLDS L M,DING J,et al. Blood monocyte transcriptome and epigenome analyses reveal loci associated with human atherosclerosis[J/OL]. Nat Commun,2017,8(1):393[2022-06-16]. https://doi.org/10.1038/s41467-017-00517-4. [35] XIANG Y,LIANG B,ZHANG X K,et al. Atheroprotective mechanism by which folic acid regulates monocyte subsets and function through DNA methylation[J/OL]. Clin Epigenetics,2022,14(1):32[2022-06-16]. https://doi.org/10.1186/s13148-022-01248-0. [36] DENG Q Y,HUANG W,PENG C Y,et al. Genomic 5-mC contents in peripheral blood leukocytes were independent protective factors for coronary artery disease with a specific profile in different leukocyte subtypes[J/OL]. Clin Epigenetics,2018,10:9[2022-06-16]. https://doi.org/10.1186/s13148-018-0443-x. [37] JIANG D,WANG Y,CHANG G L,et al. DNA hydroxymethylation combined with carotid plaques as a novel biomarker for coronary atherosclerosis[J]. Aging(Albany NY),2019,11(10):3170-3181. [38] JIANG D,SUN M,YOU L N,et al. DNA methylation and hydroxymethylation are associated with the degree of coronary atherosclerosis in elderly patients with coronary heart disease[J/OL]. Life Sci,2019,224:241-248[2022-06-16]. https://doi.org/10.1016/j.lfs.2019.03.021. [39] BAKSHI C,VIJAYVERGIYA R,DHAWAN V. Aberrant DNA methylation of M1-macrophage genes in coronary artery disease[J/OL]. Sci Rep,2019,9(1):1429[2022-06-16]. https://doi.org/10.1038/s41598-018-38040-1. [40] AMMOUS F,ZHAO W,LIN L,et al. Epigenetics of single-site and multi-site atherosclerosis in African Americans from the genetic epidemiology network of arteriopathy(GENOA)[J/OL]. Clin Epigenetics,2022,14(1):10[2022-06-16]. https://doi.org/10.1186/s13148-022-01229-3. [41] WU L P,PEI Y Q,ZHU Y H,et al. Association of N6-methyladenine DNA with plaque progression in atherosclerosis via myocardial infarction-associated transcripts[J/OL]. Cell Death Dis,2019,10(12):909[2022-06-16]. https://doi.org/ 10.1038/s41419-019-2152-6. [42] ZUO H P,GUO Y Y,CHE L,et al. Hypomethylation of interleukin-6 promoter is associated with the risk of coronary heart disease[J]. Arq Bras Cardiol,2016,107(2):131-136. [43] HE X W,ZHAO Y,SHI Y H,et al. DNA methylation analysis identifies differentially methylated sites associated with early-onset intracranial atherosclerotic stenosis[J]. J Atheroscler Thromb,2020,27(1):71-99. [44] CULLELL N,SORIANO-TÁRRAGA C,GALLEGO-FÁBREGA C,et al. DNA methylation and ischemic stroke risk:an epigenome-wide association study[J]. Thromb Haemost,2022,122(10):1767-1778. [45] NAVAS-ACIEN A,DOMINGO-RELLOSO A,SUBEDI P,et al. Blood DNA methylation and incident coronary heart disease:evidence from the strong heart study[J]. JAMA Cardiol,2021,6(11):1237-1246. [46] FERNÁNDEZ-SANLÉS A,SAYOLS-BAIXERAS S,CURCIO S,et al. DNA methylation and age-independent cardiovascular risk,an epigenome-wide approach:the REGICOR study(registre gironí del COR)[J]. Arterioscler Thromb Vasc Biol,2018,38(3):645-652. [47] CASTELLANI C A,LONGCHAMPS R J,SUMPTER J A,et al. Mitochondrial DNA copy number can influence mortality and cardiovascular disease via methylation of nuclear DNA CpGs[J/OL]. Genome Med,2020,12(1):84[2022-06-16]. https://doi.org/ 10.1186/s13073-020-00778-7. [48] PORTILLA-FERNÁNDEZ E,HWANG S J,WILSON R,et al. Meta-analysis of epigenome-wide association studies of carotid intima-media thickness[J]. Eur J Epidemiol,2021,36(11):1143-1155. [49] WEI L H,ZHAO S M,WANG G X,et al. SMAD7 methylation as a novel marker in atherosclerosis[J]. Biochem Biophys Res Commun,2018,496(2):700-705. [50] DEKKERS K F,VAN ITERSON M,SLIEKER R C,et al. Blood lipids influence DNA methylation in circulating cells[J/OL]. Genome Biol,2016,17(1):138[2022-06-16]. https://doi.org/10.1186/s13059-016-1000-6. [51] ADAMS H P JR,BENDIXEN B H,KAPPELLE L J,et al. Classification of subtype of acute ischemic stroke. Definitions for use in a multicenter clinical trial. TOAST. Trial of Org 10172 in acute stroke treatment[J]. Stroke,1993,24(1):35-41. [52] SORIANO-TÁRRAGA C,JIMÉNEZ-CONDE J,GIRALT-STEINHAUER E,et al. Global DNA methylation of ischemic stroke subtypes[J/OL]. PLoS One,2014,9(4):e96543[2022-06-16]. https://doi.org/10.1371/journal.pone.0096543. [53] SHEN Y P,PENG C,BAI Q K,et al. Epigenome-wide association study indicates hypomethylation of MTRNR2L8 in large-artery atherosclerosis stroke[J]. Stroke,2019,50(6):1330-1338. [54] KIM J Y,CHOI B G,JELINEK J,et al. Promoter methylation changes in ALOX12 and AIRE1:novel epigenetic markers for atherosclerosis[J/OL]. Clin Epigenetics,2020,12(1):66[2022-06-16]. https://doi.org/10.1186/s13148-020-00846-0. [55] BUSHUEVA O,BARYSHEVA E,MARKOV A,et al. DNA hypomethylation of the MPO gene in peripheral blood leukocytes is associated with cerebral stroke in the acute phase[J]. J Mol Neurosci,2021,71(9):1914-1932. [56] SORIANO-TÁRRAGA C,LAZCANO U,GIRALT-STEINHAUER E,et al. Identification of 20 novel loci associated with ischaemic stroke. Epigenome-wide association study[J]. Epigenetics,2020,15(9):988-997. [57] QIN X Y,LI J,WU T,et al. Overall and sex-specific associations between methylation of the ABCG1 and APOE genes and ischemic stroke or other atherosclerosis-related traits in a sibling study of Chinese population[J/OL]. Clin Epigenetics,2019,11(1):189[2022-06-16]. https://doi.org/10.1186/s13148-019-0784-0. [58] ZHANG H L,ZHAO X Y,WANG C J,et al. A preliminary study of the association between apolipoprotein E promoter methylation and atherosclerotic cerebral infarction[J]. J Stroke Cerebrovasc Dis,2019,28(4):1056-1061. [59] LI Z B,YU F,ZHOU X Q,et al. Promoter hypomethylation of microRNA223 gene is associated with atherosclerotic cerebral infarction[J/OL]. Atherosclerosis,2017,263:237-243[2022-06-16]. https://doi.org/10.1016/j.atherosclerosis.2017.06.924. [60] GALLEGO-FABREGA C,CULLELL N,SORIANO-TÁRRAGA C,et al. DNA methylation of MMPs and TIMPs in atherothrombosis process in carotid plaques and blood tissues[J]. Oncotarget,2020,11(10):905-912. [61] LI J J,ZHANG X P,YANG M X,et al. DNA methylome profiling reveals epigenetic regulation of lipoprotein-associated phospholipase A2 in human vulnerable atherosclerotic plaque[J/OL]. Clin Epigenetics,2021,13(1):161[2022-06-16]. https://doi.org/10.1186/s13148-021-01152-z. [62] GALLEGO-FABREGA C,CARRERA C,RENY J L,et al. PPM1A methylation is associated with vascular recurrence in aspirin-treated patients[J]. Stroke,2016,47(7):1926-1929. [63] GALLEGO-FABREGA C,CARRERA C,RENY J L,et al. TRAF3 epigenetic regulation is associated with vascular recurrence in patients with ischemic stroke[J]. Stroke,2016,47(5):1180-1186. [64] LI X G,ZHAO K,MA N,et al. Association of ABCB1 promoter methylation with aspirin exposure,platelet function,and clinical outcomes in Chinese intracranial artery stenosis patients[J]. Eur J Clin Pharmacol,2017,73(10):1261-1269. [65] LIBBY P,HANSSON G K. From focal lipid storage to systemic inflammation:JACC review topic of the week[J]. J Am Coll Cardiol,2019,74(12):1594-1607. |
[1] | CAO Liming, REN Lijie. Progress and Prospects of Diagnosis and Treatment Techniques for Acute Ischemic Stroke [J]. Chinese Journal of Stroke, 2024, 19(9): 983-989. |
[2] |
FU Pengcheng, CAO Liming, ZHU Jiaqian, ZHAO Guiyu, XU Gelin.
Research Progress of Reperfusion Therapy for Large Artery Atherosclerotic Ischemic Stroke [J]. Chinese Journal of Stroke, 2024, 19(9): 1004-1011. |
[3] | ZHANG Liping, CAO Liming, XIAO Nan, LIAO Yuqi, CHI Feng, YU Yanni, REN Lijie. Research Progress and Challenges of Nanomaterials in the Diagnosis and Treatment of Ischemic Stroke [J]. Chinese Journal of Stroke, 2024, 19(9): 1012-1017. |
[4] | WANG Xiaorui, LUO Song, ZOU Liangyu, QU Hongdang, CUI Xue, ZHAO Yujie. Value of Eosinophil-to-Monocyte Ratio in Predicting the Prognosis of Patients with Acute Ischemic Stroke Receiving Intravenous Thrombolysis [J]. Chinese Journal of Stroke, 2024, 19(9): 1025-1033. |
[5] | WANG Shuo, YU Ping, ZHANG Ning, WANG Chunxue. Bibliometric Analysis of References on the Correlation between Ischemic Stroke and Sleep from 2013 to 2023 [J]. Chinese Journal of Stroke, 2024, 19(9): 1040-1047. |
[6] | ZHOU Hongyu, LI Zixiao, WANG Yongjun. Research Progress on Radiomics-Based Brain Age Prediction and Ischemic Stroke [J]. Chinese Journal of Stroke, 2024, 19(9): 1066-1076. |
[7] | ABULANIYAZI Anaguli, WU Xiaoxin, LI Jiaoxing, LI Zhuhao, SHENG Wenli. Research Progress on Factors Related to the Susceptibility Vessel Sign and its Clinical Application in Acute Ischemic Stroke [J]. Chinese Journal of Stroke, 2024, 19(9): 1077-1085. |
[8] | WU Chunyan, YIN Yashi, WANG Guangzhi, YUE Kuitao. Evaluation and Application of Medical Imaging for Acute Ischemic Stroke at Different Time Windows: A Review [J]. Chinese Journal of Stroke, 2024, 19(9): 1094-1101. |
[9] |
ZHANG Mengruo, XU Shouchen, SUI Cuicui, LI Yukui, WANG Xueli.
The Effects of Lower Limb Rehabilitation Robot Combined with Scalp Acupuncture on the Walking Efficiency and Coordination Function in Elderly Patients with Ischemic Stroke [J]. Chinese Journal of Stroke, 2024, 19(8): 902-908. |
[10] |
WU Yuqian, ZHANG Yumei, ZANG Dawei, FAN Xiaowei, WANG Anxin, ZHANG Xiaoli, MENG Xia.
Study on the Reliability, Validity, and Sensitivity of Action Research Arm Test Scale in Evaluating the Function of Hemiplegic Upper Limb and Hand in Subacute Stage Ischemic Stroke Patients [J]. Chinese Journal of Stroke, 2024, 19(8): 915-923. |
[11] |
MO Qiuhong, DING Xiaobo, LI Jing, ZHANG Yanbo, LI Weirong.
Research on Prediction of Recurrence of Minor Ischemic Stroke Based on Interpretable Machine Learning Models [J]. Chinese Journal of Stroke, 2024, 19(8): 924-930. |
[12] |
LU Dan, CHEN Weiqi, WANG Yaping, DUAN Wanying, GUO Lei, WANG Ling, LIU Liping, XU Anding, WANG Yongjun, Cerebroprotection Academic Roundtable Academic Committee of Chinese Stroke Association .
Scientific Statements on Brain Cytoprotection in Ischemic Stroke—A Scientific Statement from the Chinese Stroke Association [J]. Chinese Journal of Stroke, 2024, 19(8): 938-955. |
[13] | LI Guangshuo, ZHAO Xingquan. Interpretation of the Chinese Guidelines for Diagnosis and Treatment of Acute Ischemic Stroke 2023 [J]. Chinese Journal of Stroke, 2024, 19(8): 956-961. |
[14] |
BAI Leipeng, LUO Jie, ZHOU Sijie, HUANG Jianhui, LIANG Mingqin, ZHAO Qingshun.
Interventional Thrombectomy in Patients with Acute Ischemic Stroke after Wedge Resection of Pulmonary Lobes: Two Case Reports and Literature Review [J]. Chinese Journal of Stroke, 2024, 19(8): 962-966. |
[15] | ZHAO Yan, YAO Jingxin, PENG Yuming. A Report of Simultaneous Complications of Ischemic Stroke and Intracerebral Hemorrhage in Geriatric Patients Undergoing Craniotomy for Tumor Resections during the Perioperative Period [J]. Chinese Journal of Stroke, 2024, 19(7): 797-802. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||