Chinese Journal of Stroke ›› 2014, Vol. 9 ›› Issue (02): 158-162.
Previous Articles Next Articles
Received:
2013-11-20
Online:
2014-02-20
Published:
2014-02-20
隋滨滨1,2,薛蕴菁3,高培毅1,2
通讯作者:
高培毅
cjr.gaopeiyi@vip.163.
com
基金资助:
国自然基金(81301193)
北京自然科学基金
(7122029)及(7133238)
SUI Bin-Bin*, XUE Yun-Jing, GAO Pei-Yi.. Hemodynamic Research Development of Carotid Atherosclerosis Based on MR Imaging[J]. Chinese Journal of Stroke, 2014, 9(02): 158-162.
隋滨滨1,2,薛蕴菁3,高培毅1,2. 基于磁共振成像的颈动脉粥样硬化相 关血流动力学研究进展[J]. 中国卒中杂志, 2014, 9(02): 158-162.
1 Roger VL, Go AS, Lloyd-Jones DM, et al. Heartdisease and stroke statistics--2012 update:A reportfrom the American Heart Association[J]. Circulation,2012, 125:e2-e220.2 He J, Gu D, Wu X, et al. Major causes of death amongmen and women in China[J]. N Engl J Med, 2005,353:1124-1134.3 Zarins CK, Giddens DP, Bharadvaj BK, et al. Carotidbifurcation atherosclerosis:Quantitative correlationof plaque localization with flow velocity profiles andwall shear stress[J]. Circ Res, 1983, 53:502-514.4 Ku DN, Giddens DP, Zarins CK, et al. Pulsatilef low and atherosclerosis in the human carotidbifurcation:positive correlation between plaquelocation and low and oscillating shear stress[J].Atherosclerosis, 1985, 5:293-302.5 Glagov S, Zarins C, Giddens DP, et al. Hemodynamicsand atherosclerosis. Insights and perspectives gainedfrom studies of human arteries[J]. Arch Pathol LabMed, 1988, 112:1018-1031.6 Xue YJ, Gao PY, Duan Q, et al. Preliminary study ofhemodynamic distribution in patient-specific stenoticcarotid bifurcation by image-based computationalfluid dynamics[J]. Acta Radiol, 2008, 49:558-565.7 Pen nathu r S, Be rg t C, Shao B, et al. Humanatherosclerotic intima and blood of patients withestablished coronary artery disease contain highdensity lipoprotein damaged by reactive nitrogenspecies[J]. J Biol Chem, 2004, 279:42977-42983. 8 杨永宗. 动脉粥样硬化性心血管病基础与临床[M]. 北京:科学出版社, 2004:3-9.9 Ross R. The pathogenesis of atherosclerosis:aperspective for the 1990s[J]. Nature, 1993, 362:801-809.10 Ishikawa Y, Asuwa N, Ishii T, et al. Collagenalteration in vascular remodeling by hemodynamicfactors[J]. Virchows Arch, 2000, 437:138-148.11 Ward MR, Tsao PS, Agrotis A, et al. Low bloodf low after angioplasty augments mechanisms ofrestenosis:inward vessel remodeling, cell migration,and activity of genes regulating migration[J].Arterioscler Thromb Vasc Biol, 2001, 21:208-213.12 Steinman DA. Image-based computational f luiddynamics modeling in realistic arterial geometries[J].Ann Biomed Eng, 2002, 30:483-497.13 St einman DA, Thoma s JB, Ladak HM, et al.Reconstruction of carotid bifurcation hemodynamicsand wall thickness using comput ational f luiddynamics and MRI[J]. Magn Reson Med, 2002,47:149-159.14 薛蕴菁, 高培毅, 林燕, 等. 颈动脉分叉血液动力状态的计算流体力学初步研究[J]. 中华放射学杂志, 2006,40:638-641.15 Sui B, Gao P, Lin Y, et al. Blood flow pattern and wallshear stress in the internal carotid artery of healthysubject[J]. Acta Radiologica, 2008, 49:806-814.16 Wu SP, Ri ng g a a r d S, Pe d e r s e n EM. Th r e e -dimensional phase cont rast velocity mappingacquisition improves wall shear stress estimation invivo[J]. Magn Reson Imaging, 2004, 22:345-351.17 Petty W, Brown D, Whisnant P, et al. Ischemic strokesubtypes:a population-based study of functionaloutcome, survival, and recurrence[J]. Stroke, 2000,31:1062-1068.18 Younis HF, Kaazempur-Mofrad MR, Chan RC,et al. Hemody namics and wal l me chanics inhuman carotid bifurcation and its consequencesfor atherogenesis:investigation of inter-individualvariation[J]. Biomech Model Mechanobiol, 2004, 3:17-32.19 Zhou SY, Wang YH, Li YJ, et al. Effect of Shenlianextracts on blood flow and vessel pathological changesin rabbit carotid atherosclerosis model induced by lowshear stress[J]. Zhongguo Zhong Yao Za Zhi, 2013,38:1595-1600.20 Schirmer CM, Malek AM. Computational f luiddynamic characterization of carotid bifurcationstenosis in patient-based geometries[J]. Brain Behav,2012, 2:42-52.21 La Disa JF Jr, Bowers M, Harmann L, et al. Timeefficientpatient-specific quantification of regional carotid artery fluid dynamics and spatial correlationwith plaque burden[J]. Med Phys, 2010, 37:784-792.22 Vozzi F, Bianchi F, Ahluwalia A, et al. Hydrostaticpressure and shear stress affect endothelin-1 and nitricoxide release by endothelial cells in bioreactors[J].Biotechnol J, 2014, 9:146-154.23 Li ZY, Tang T, U-King-Im J, et al. Assessment ofcarotid plaque vulnerability using structural andgeometrical determinants[J]. Circ J, 2008, 72:1092-1099.24 Kock SA, Nygaard JV, Eldrup N, et al. Mechanicalstresses in carotid plaques using MRI-based fluidstructureinteraction models[J]. J Biomech, 2008,41:1651-1658.25 Li ZY, Howarth S, Tang T, et al. Does calciumdeposition play a role in the stability of atheroma?Location may be the key[J]. Cerebrovasc Dis, 2007,24:452-459.26 Groen HC, Gijsen FJ, van der Lugt A, et al. Plaquerupture in the carotid artery is localized at the highshear stress region:a case report[J]. Stroke, 2007,38:2379-2381.27 Trivedi RA, Li ZY, U-King-Im J, et al. Identifyingvulnerable carotid plaques in vivo using highresolution magnetic resonance imaging based finiteelement analysis[J]. J Neurosurg, 2007, 107:536-542.28 Cicha I, Wör ner A, Urschel K, et al. Ca rot idplaque vulnerability:a positive feedback betweenhemodynamic and biochemical mechanisms[J].Stroke, 2011, 42:3502-3510.29 Jing LN, Gao PY, Lin Y, et al. Distribution of wallshear stress in carotid plaques using magneticresonance imaging and computational fluid dynamicsanalysis:a preliminary study[J]. Chin Med J (Engl),2011, 124:1465-1469.30 Tang D, Teng Z, Canton G, et al. Sites of rupture inhuman atherosclerotic carotid plaques are associatedwith high structural stresses:an in vivo MRI-based3D fluid-structure interaction study[J]. Stroke, 2009,40:3258-3263.31 Teng Z, Canton G, Yuan C, et al. 3D critical plaquewall stress is a better predictor of carotid plaquerupture sites than f low shear stress:an in vivoMRI-based 3D FSI study[J]. J Biomech Eng, 2010,132:031007.32 Huang X, Teng Z, Canton G, et al. Intraplaquehemorrhage is associated with higher structuralstresses in human atherosclerotic plaques:an in vivoMRI-based 3D fluid-structure interaction study[J].Biomed Eng Online, 2010, 31:86.33 Teng Z, He J, Degnan AJ, et al. Critical mechanical carotid artery fluid dynamics and spatial correlationwith plaque burden[J]. Med Phys, 2010, 37:784-792.22 Vozzi F, Bianchi F, Ahluwalia A, et al. Hydrostaticpressure and shear stress affect endothelin-1 and nitricoxide release by endothelial cells in bioreactors[J].Biotechnol J, 2014, 9:146-154.23 Li ZY, Tang T, U-King-Im J, et al. Assessment ofcarotid plaque vulnerability using structural andgeometrical determinants[J]. Circ J, 2008, 72:1092-1099.24 Kock SA, Nygaard JV, Eldrup N, et al. Mechanicalstresses in carotid plaques using MRI-based fluidstructureinteraction models[J]. J Biomech, 2008,41:1651-1658.25 Li ZY, Howarth S, Tang T, et al. Does calciumdeposition play a role in the stability of atheroma?Location may be the key[J]. Cerebrovasc Dis, 2007,24:452-459.26 Groen HC, Gijsen FJ, van der Lugt A, et al. Plaquerupture in the carotid artery is localized at the highshear stress region:a case report[J]. Stroke, 2007,38:2379-2381.27 Trivedi RA, Li ZY, U-King-Im J, et al. Identifyingvulnerable carotid plaques in vivo using highresolution magnetic resonance imaging based finiteelement analysis[J]. J Neurosurg, 2007, 107:536-542.28 Cicha I, Wör ner A, Urschel K, et al. Ca rot idplaque vulnerability:a positive feedback betweenhemodynamic and biochemical mechanisms[J].Stroke, 2011, 42:3502-3510.29 Jing LN, Gao PY, Lin Y, et al. Distribution of wallshear stress in carotid plaques using magneticresonance imaging and computational fluid dynamicsanalysis:a preliminary study[J]. Chin Med J (Engl),2011, 124:1465-1469.30 Tang D, Teng Z, Canton G, et al. Sites of rupture inhuman atherosclerotic carotid plaques are associatedwith high structural stresses:an in vivo MRI-based3D fluid-structure interaction study[J]. Stroke, 2009,40:3258-3263.31 Teng Z, Canton G, Yuan C, et al. 3D critical plaquewall stress is a better predictor of carotid plaquerupture sites than f low shear stress:an in vivoMRI-based 3D FSI study[J]. J Biomech Eng, 2010,132:031007.32 Huang X, Teng Z, Canton G, et al. Intraplaquehemorrhage is associated with higher structuralstresses in human atherosclerotic plaques:an in vivoMRI-based 3D fluid-structure interaction study[J].Biomed Eng Online, 2010, 31:86.33 Teng Z, He J, Degnan AJ, et al. Critical mechanical |
[1] | ZHU Jiaqian, CAO Liming. Research Progress of the Diagnostic Methods and Techniques for Patent Foramen Ovale [J]. Chinese Journal of Stroke, 2024, 19(9): 991-997. |
[2] |
XIE Xuewei, JING Jing, JIANG Qianmei, SUO Yue, WANG Yihuai, WANG Yongjun.
A Brief History of the Development of Low-Field Magnetic Resonance Imaging Systems and Their Applications and Prospects in Neurological Diseases [J]. Chinese Journal of Stroke, 2024, 19(7): 740-745. |
[3] | ZHAO Chenyang, LI Jin, LI Dongye, QIAO Huiyu, ZHAO Xihai, ZHOU Dan. Study on the Predictive Value of the Intracranial and Carotid Arteries Coexisting Atherosclerotic Plaque Distribution Characteristics for the Risk of Ischemic Stroke Recurrence [J]. Chinese Journal of Stroke, 2024, 19(6): 647-654. |
[4] | ZHANG Dongling, WU Tao. Advances of Imaging in the Differential Diagnosis of Vascular Parkinsonism [J]. Chinese Journal of Stroke, 2023, 18(8): 867-872. |
[5] | LIANG Jia, KANG Huibin, LI Baoqing, SUI Binbin. The Imaging Features of High Resolution Magnetic Resonance Vessel Wall Imaging in Young Patients with Intracranial Artery Stenosis [J]. Chinese Journal of Stroke, 2023, 18(11): 1255-1261. |
[6] |
LIU Yang, WANG Rui, ZHANG Xiang, SUN Huiling, MA Yinghu.
Risk factors of Cerebral Microbleeds in Patients with Symptomatic and Atherosclerotic Cerebral Small Vessel Disease
[J]. Chinese Journal of Stroke, 2023, 18(04): 440-449.
|
[7] |
LI Bo, HU Yongzhen, LI Xuesong.
Imaging Evaluation of Secondary Brain Injury in Spontaneous Intracerebral Hemorrhage
[J]. Chinese Journal of Stroke, 2023, 18(03): 347-352.
|
[8] | LU Yan, YANG Baorong, HUANG Xiangping, YANG Guangui, CHEN Shengwen, LI Jianrong, ZENG Xiaoming. MRI-Guided Thrombolysis beyond Time Window in Acute Ischemic Stroke in a County-Level Hospital: A Case-Control Study [J]. Chinese Journal of Stroke, 2022, 17(12): 1321-1326. |
[9] | CHEN Yang, ZHANG Jing, CHEN Fen, DING Xing, CHEN Kuntao. Progress of Functional Magnetic Resonance Imaging in Evaluating Penumbra in Ischemic Stroke [J]. Chinese Journal of Stroke, 2022, 17(11): 1264-1270. |
[10] | XIANG Wei, XU Luyao, ZHANG Manman, WEI Hongchun, LIANG Zhigang. The Frequency and Influencing Factors of Asymmetrical Prominent Veins Sign on Susceptibility-Weighted Imaging in Acute Ischemic Stroke [J]. Chinese Journal of Stroke, 2022, 17(10): 1097-1102. |
[11] | LIU Yitong, HUANG Yanqi, LI Mingli, FENG Feng, GAO Shan, XU Weihai. Carotid Artery Geometry: A Potential Predictor for Intracranial Atherosclerosis in People at Age 60 or Less than 60 Years without Traditional Vascular Risk Factors [J]. Chinese Journal of Stroke, 2022, 17(09): 925-931. |
[12] | XU Luyao, CHEN Xiaodi, LIANG Zhigang. Advances in Imaging Evaluation of Post-stroke Aphasia [J]. Chinese Journal of Stroke, 2022, 17(09): 1017-1021. |
[13] | YE Yichao, YU Shi, SHE Yajun, FANG Zheng, WANG Yi. Progress of Vascular Parkinsonism [J]. Chinese Journal of Stroke, 2022, 17(04): 346-350. |
[14] | GAO Yu, FENG Xue-Dan, WANG Xiang-Bo, YAN He-Li, MA Hong-Mei, ZOU Can. Clinical Characteristics of 25 Cases Series with Spinal Dural Arteriovenous Fistula [J]. Chinese Journal of Stroke, 2021, 16(11): 1137-1143. |
[15] | LU Ping, ZHAO Xing-Quan. The Value of FLAIR Hyperintense Vascular Sign in the Diagnosis and Treatment of Acute Ischemic Stroke [J]. Chinese Journal of Stroke, 2021, 16(11): 1172-1177. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||