DING Ling-Ling, LI Zi-Xiao, WANG Yong-Jun. Application of Clinical Decision Support System in the Management of Cerebrovascular Disease[J]. Chinese Journal of Stroke, 2020, 15(03): 290-295.
[1] WU S,WU B,LIU M,et al. Stroke in China:advances and challenges in epidemiology,prevention,and management[J]. Lancet Neurol,2019,18(4):394-405.[2] GBD 2016 Stroke Collaborators. Global,regional,and national burden of stroke,1990-2016:asystematic analysis for the Global Burden of DiseaseStudy 2016[J]. Lancet Neurol,2019,18(5):439-458.[3] WANG Y L,LI Z X,ZHAO X Q,et al. Effect ofa multifaceted quality improvement interventionon hospital personnel adherence to performance measures in patients with acute ischemic stroke inChina:a randomized clinical trial[J]. JAMA,2018,320(3):245-254.[4] LI Z,JIANG Y,LI H,et al. China's response to therising stroke burden[J]. BMJ,2019,364:l879.[5] PRABHAKARAN D,JHA D,PRIETO-MERINOD,et al. Effectiveness of an mHealth-basedelectronic decision support system for integratedmanagement of chronic conditions in primary care:The mWellcare Cluster-Randomized ControlledTrial[J/OL]. Circulation,2018[2020-01-10]. https://doi.org/10.1161/CIRCULATIONAHA.118.038192.[6] CHANG J,RONCO C,ROSNER M H.Computerized decision support systems:improvingpatient safety in nephrology[J]. Nat Rev Nephrol,2011,7(6):348-355.[7] LAMBIN P,van STIPHOUT R G,STARMANS MH,et al. Predicting outcomes in radiation oncology--multifactorial decision support systems[J]. Nat RevClin Oncol,2013,10(1):27-40.[8] CASTILLO R S,KELEMEN A. Considerationsfor a successful clinical decision support system[J].Comput Inform Nurs,2013,31(7):319-326;quiz327-328.[9] AFZAL M,HUSSAIN M,ALI T,et al. Knowledgebasedquery construction using the CDSS knowledgebase for efficient evidence retrieval[J]. Sensors(Basel),2015,15(9):21294-21314.[10] Control conditions in mycin:a case study[DB/OL][2020-01-10]. https://expertsystem101.weebly.com/mycin.html.[11] BRIGHT T J,WONG A,DHURJATI R,et al. Effectof clinical decision-support systems:a systematicreview[J]. Ann Intern Med,2012,157(1):29-43.[12] RANTA A,DOVEY S,WEATHERALL M,etal. Efficacy and safety of a TIA/stroke electronicsupport tool(FASTEST)trial:study protocol[J].Implement Sci,2012,7:107.[13] LAVIN T L,RANTA A. Transient ischameic attack/stroke electronic decision support:a 14-month safetyaudit[J]. J Stroke Cerebrovasc Dis,2014,23(2):267-270.[14] RANTA A,YANG C F,FUNNELL M,et al. Utilityof a primary care based transient ischaemic attackelectronic decision support tool:a prospectivesequential comparison[J]. BMC Fam Pract,2014,15:86.[15] TITANO J J,BADGELEY M,SCHEFFLEIN J,etal. Automated deep-neural-network surveillance ofcranial images for acute neurologic events[J]. NatMed,2018,24(9):1337-1341.[16] ABEDI V,GOYAL N,TSIVGOULIS G,et al.Novel screening tool for stroke using artificial neuralnetwork[J]. Stroke,2017,48(6):1678-1681.[17] RODRIGUES G M,BARREIRA C,FROEHLER M,et al. Multicenter ALADIN:automated large arteryocclusion detection in stroke imaging using artificialintelligence[J/OL]. Stroke,2019,50(supple_1):Abstract WP71[2020-01-10]. https://www.ahajournals.org/doi/10.1161/str.50.suppl_1.WP71.[18] STRAKA M,ALBERS G W,BAMMER R. Realtimediffusion-perfusion mismatch analysis in acutestroke[J]. J Magn Reson Imaging,2010,32(5):1024-1037.[19] SHIEH Y,CHANG C H,SHIEH M,et al.Computer-aided diagnosis of hyperacute stroke withthrombolysis decision support using a contralateralcomparative method of CT image analysis[J]. J DigitImaging,2014,27(3):392-406.[20] NAGENTHIRAJA K,WALCOTT B P,HANSENM B,et al. Automated decision-support system forprediction of treatment responders in acute ischemicstroke[J]. Front Neurol,2013,4:140.[21] FlYNN D,NESBITT D J,FORD G A,et al.Development of a computerised decision aid forthrombolysis in acute stroke care[J]. BMC MedInform Decis Mak,2015,15:6.[22] ADAMS H P,BENDIXEN B H,KAPPELLE LJ,et al. Classification of subtype of acute ischemicstroke. Definitions for use in a multicenter clinicaltrial. TOAST. Trial of Org 10172 in Acute StrokeTreatment[J]. Stroke,1993,24(1):35-41.[23] GOLDSTEIN L B,JONES M R,MATCHAR D B,et al. Improving the reliability of stroke subgroupclassification using the Trial of Org 10172 in AcuteStroke Treatment(TOAST)criteria[J]. Stroke,2001,32(5):1091-1098.[24] MESCHIA J F,BARRETT K M,CHUKWUDELUNZU F,et al. Interobserveragreement in the trial of org 10172 in acutestroke treatment classification of stroke based onretrospective medical record review[J]. J StrokeCerebrovasc Dis,2006,15(6):266-272.[25] ARSAVA E M,BALLABIO E,BENNER T,et al.The Causative Classification of Stroke system:aninternational reliability and optimization study[J].Neurology,2010,75(14):1277-1284.[26] AY H,BENNER T,MURAT ARSAVA E,et al. Acomputerized algorithm for etiologic classificationof ischemic stroke[J]. Stroke,2007,38(11):2979-2984.[27] NAM H S,CHA M J,KIM Y D,et al. Use of a handheld,computerized device as a decision supporttool for stroke classification[J]. Eur J Neurol,2012,19(3):426-430.[28] GARG R,OH E,NAIDECH A,et al. Automatingischemic stroke subtype classification using machinelearning and natural language processing[J]. J StrokeCerebrovasc Dis,2019,28(7):2045-2051.[29] BACCHI S,OAKDEN-RAYNER L,ZERNER T,et al. Deep Learning natural language processingsuccessfully predicts the cerebrovascular causeof transient ischemic attack-like presentations[J].Stroke,2019,50(3):758-760.[30] WEIR C J,LEES K R,MACWALTER R S,et al.Cluster-randomized,controlled trial of computerbaseddecision support for selecting long-term antithrombotictherapy after acute ischaemic stroke[J].QJM,2003,96(2):143-153.[31] ANDERSON J A,GODWIN K M,SALEEM J J,et al. Accessibility,usability,and usefulness of aweb-based clinical decision support tool to enhanceprovider-patient communication around SelfmanagementTO Prevent(STOP)Stroke[J]. HealthInformatics J,2014,20(4):261-274.[32] ANDERSON J A,WILLSON P,PETERSON N J,et al. Prototype to practice:developing and testinga clinical decision support system for secondarystroke prevention in a veterans healthcare facility[J].Comput Inform Nurs,2010,28(6):353-363.[33] KARLSSON L O,NILSSON S,BANG M,etal. A clinical decision support tool for improvingadherence to guidelines on anticoagulant therapyin patients with atrial fibrillation at risk of stroke:acluster-randomized trial in a Swedish primary caresetting(the CDS-AF study)[J/OL]. PLoS Med,2018,15(3):e1002528[2020-01-10]. https://doi.org/10.1371/journal.pmed.1002528.[34] PIAZZA G,HURWITZ S,GALVIN C E,et al.Alert-based computerized decision support for highriskhospitalized patients with atrial fibrillationnot prescribed anticoagulation:a randomized,controlled trial(AF-ALERT)[J/OL]. Eur Heart J,2019[2020-01-10]. https://doi.org/10.1093/eurheartj/ehz385.[35] BON HOMME M,REYNOLDS K K,VALDESR Jr,et al. Dynamic pharmacogenetic models inanticoagulation therapy[J]. Clin Lab Med,2008,28(4):539-552.[36] CHASE D A,BARON S,ASH J S. Clinical decisionsupport and primary care acceptance of genomicmedicine[J]. Stud Health Technol Inform,2017,245:700-703.