中国卒中杂志 ›› 2024, Vol. 19 ›› Issue (4): 376-404.DOI: 10.3969/j.issn.1673-5765.2024.04.002
陈玮琪1*,徐佳洁2,3*,陆瑶1,王玲1,曹瑾怡2,3,陈鸿宾1,郭蕾1,吕琰琛2,3,汤晗2,3,王赞1,徐非凡2,3,颜庭梦2,3,应云清2,3,仲伟逸2,3,周蓉2,3,陆正齐4,程忻2,3,王伊龙1,3,5,6,7,8,9,10,中国卒中学会脑小血管病分会(*第一作者)
收稿日期:
2024-02-07
出版日期:
2024-04-20
发布日期:
2024-04-20
通讯作者:
王伊龙 yilong528@aliyun.com
程忻 chengxin@fudan.edu.cn
陆正齐 lzq1828@aliyun.com
CHEN Weiqi1*, XU Jiajie2,3*, LU Yao1, WANG Ling1, CAO Jinyi2,3, CHEN Hongbin1, GUO Lei1, LYU Yanchen2,3, TANG Han2,3, WANG Zan1, XU Feifan2,3, YAN Tingmeng2,3, YING Yunqing2,3, ZHONG Weiyi2,3, ZHOU Rong2,3, LU Zhengqi4, CHENG Xin2,3, WANG Yilong1,3,5,6,7,8,9,10, Small Vessel Disease Branch of Chinese Stroke Association (*contributed equally)
Received:
2024-02-07
Online:
2024-04-20
Published:
2024-04-20
Contact:
WANG Yilong, E-mail: yilong528@aliyun.com
CHENG Xin, E-mail: chengxin@fudan.edu.cn
LU Zhengqi, E-mail: lzq1828@aliyun.com
摘要: 脑小血管病(small vessel disease,SVD)是一类以脑内小血管受损为主的临床影像综合征,可能会导致卒中、血管性认知障碍、神经心理疾病与其他功能障碍等。自2013年血管性神经病变的影像报告标准(standards for reporting vascular changes on neuroimaging,STRIVE)发布以来,SVD的神经影像学特征得到了初步的分类与标准化。然而,在临床实践与科学研究中,对SVD影像特征的认识和应用仍存在诸多不一致和不规范之处。随着对SVD病理生理机制的深入探索与影像技术的不断进步,新的SVD影像特征和定量标志物被相继发现,为SVD的诊断和评估提供了更为全面且精准的信息。在此基础上,STRIVE-2应运而生,以期能更全面地揭示SVD对脑功能与结构的影响。为了规范中国SVD的神经影像学评估和诊断,本共识将在STRIVE-2的基础上,结合中国具体国情,对SVD的神经影像学特征进行深入解读,旨在推动SVD影像学诊断术语的标准化,提高临床诊断的准确性,进一步促进相关领域的研究与进步。
中图分类号:
陈玮琪, 徐佳洁, 陆瑶, 王玲, 曹瑾怡, 陈鸿宾, 郭蕾, 吕琰琛, 汤晗, 王赞, 徐非凡, 颜庭梦, 应云清, 仲伟逸, 周蓉, 陆正齐, 程忻, 王伊龙, 中国卒中学会脑小血管病分会. 中国脑小血管病的神经影像学诊断标准及名词标准化定义——来自中国卒中学会的专家共识[J]. 中国卒中杂志, 2024, 19(4): 376-404.
CHEN Weiqi, XU Jiajie, LU Yao, WANG Ling, CAO Jinyi, CHEN Hongbin, GUO Lei, LYU Yanchen, TANG Han, WANG Zan, XU Feifan, YAN Tingmeng, YING Yunqing, ZHONG Weiyi, ZHOU Rong, LU Zhengqi, CHENG Xin, WANG Yilong, Small Vessel Disease Branch of Chinese Stroke Association. Neuroimaging Diagnostic Criteria and Standardized Definition of Terms for Small Vessel Disease in China—Expert Consensus from the Chinese Stroke Association[J]. Chinese Journal of Stroke, 2024, 19(4): 376-404.
[1] WARDLAW J M,SMITH C,DICHGANS M. Small vessel disease:mechanisms and clinical implications[J]. Lancet Neurol,2019,18(7):684-696. [2] WARDLAW J M,SMITH E E,BIESSELS G J,et al. Neuroimaging standards for research into small vessel disease and its contribution to ageing and neurodegeneration[J]. Lancet Neurol,2013,12(8):822-838. [3] DUERING M,BIESSELS G J,BRODTMANN A,et al. Neuroimaging standards for research into small vessel disease—advances since 2013[J]. Lancet Neurol,2023,22(7):602-618. [4] CHO A H,KWON H S,LEE M H,et al. Hemorrhagic focus within the recent small subcortical infarcts on long-term follow-up magnetic resonance imaging[J/OL]. Stroke,2022,53(4):e139-e140[2023-12-12]. https://doi.org/10.1161/STROKEAHA.121.037939. [5] PINTER D,GATTRINGER T,ENZINGER C,et al. Longitudinal MRI dynamics of recent small subcortical infarcts and possible predictors[J]. J Cereb Blood Flow Metab,2019,39(9):1669-1677. [6] DUERING M,ADAM R,WOLLENWEBER F A,et al. Within-lesion heterogeneity of subcortical DWI lesion evolution,and stroke outcome:a voxel-based analysis[J]. J Cereb Blood Flow Metab,2020,40(7):1482-1491. [7] LOOS C M J,MAKIN S D J,STAALS J,et al. Long-term morphological changes of symptomatic lacunar infarcts and surrounding white matter on structural magnetic resonance imaging[J]. Stroke,2018,49(5):1183-1188. [8] GATTRINGER T,VALDES HERNANDEZ M,HEYE A,et al. Predictors of lesion cavitation after recent small subcortical stroke[J]. Transl Stroke Res,2020,11(3):402-411. [9] EPPINGER S,GATTRINGER T,NACHBAUR L,et al. Are morphologic features of recent small subcortical infarcts related to specific etiologic aspects?[J/OL]. Ther Adv Neurol Disord,2019,12[2023-12-12]. https://doi.org/10.1177/1756286419835716. [10] 朱以诚,潘子昂. 规范脑小血管病的影像诊断[J]. 中华神经科杂志,2022,55(02):91-95. ZHU Y C,PAN Z A. Normalize the imaging diagnosis of cerebral small vessel disease[J]. Chin J Neurol,2022,55(02):91-95. [11] MOREAU F,PATEL S,LAUZON M L,et al. Cavitation after acute symptomatic lacunar stroke depends on time,location,and MRI sequence[J]. Stroke,2012,43(7):1837-1842. [12] GESIERICH B,DUCHESNAY E,JOUVENT E,et al. Features and determinants of lacune shape:relationship with fiber tracts and perforating arteries[J]. Stroke,2016,47(5):1258-1264. [13] TER TELGTE A,WIEGERTJES K,GESIERICH B,et al. Contribution of acute infarcts to cerebral small vessel disease progression[J]. Ann Neurol,2019,86(4):582-592. [14] ZHANG J T,HAN F,LIANG X Y,et al. Lacune and large perivascular space:two kinds of cavities are of different risk factors and stroke risk[J]. Cerebrovasc Dis,2020,49(5):522-530. [15] SHARMA B,WANG M,MCCREARY C R,et al. Gait and falls in cerebral small vessel disease:a systematic review and meta-analysis[J/OL]. Age Ageing,2023,52(3):afad011[2023-12-12]. https://doi.org/10.1093/ageing/afad011. [16] DEBETTE S,SCHILLING S,DUPERRON M G,et al. Clinical significance of magnetic resonance imaging markers of vascular brain injury:a systematic review and meta-analysis[J]. JAMA Neurol,2019,76(1):81-94. [17] APPLETON J P,WOODHOUSE L J,ADAMI A,et al. Imaging markers of small vessel disease and brain frailty,and outcomes in acute stroke[J/OL]. Neurology,2020,94(5):e439-e452[2023-12-12]. https://doi.org/10.1212/WNL.0000000000008881. [18] YI F,CAI M F,JACOB M A,et al. Spatial relation between white matter hyperintensities and incident lacunes of presumed vascular origin:a 14-year follow-up study[J]. Stroke,2022,53(12):3688-3695. [19] TREABA C A,GRANBERG T E,SORMANI M P,et al. Longitudinal characterization of cortical lesion development and evolution in multiple sclerosis with 7.0-T MRI[J]. Radiology,2019,291(3):740-749. [20] LYNCH D S,RODRIGUES BRANDÃO DE PAIVA A,ZHANG W J,et al. Clinical and genetic characterization of leukoencephalopathies in adults[J]. Brain,2017,140(5):1204-1211. [21] WARDLAW J M,VALDÉS HERNÁNDEZ M C,MUÑOZ-MANIEGA S. What are white matter hyperintensities made of?Relevance to vascular cognitive impairment[J/OL]. JAHA,2015,4(6):e001140[2023-12-12]. https://doi.org/10.1161/JAHA. 114.001140. [22] DEBETTE S,MARKUS H S. The clinical importance of white matter hyperintensities on brain magnetic resonance imaging:systematic review and meta-analysis[J/OL]. BMJ,2010,341:c3666[2023-12-12]. https://doi.org/10.1136/bmj.c3666. [23] HAN F,ZHAI F F,WANG Q,et al. Prevalence and risk factors of cerebral small vessel disease in a Chinese population-based sample[J]. J Stroke,2018,20(2):239-246. [24] ROSEBOROUGH A D,SAAD L,GOODMAN M,et al. White matter hyperintensities and longitudinal cognitive decline in cognitively normal populations and across diagnostic categories:a meta-analysis,systematic review,and recommendations for future study harmonization[J]. Alzheimers Dement,2023,19(1):194-207. [25] DE LAAT K F,TULADHAR A M,VAN NORDEN A G,et al. Loss of white matter integrity is associated with gait disorders in cerebral small vessel disease[J/OL]. Brain,2011,134(Pt 1):73-83[2023-12-12]. https://doi.org/10.1093/brain/awq343. [26] CLANCY U,GILMARTIN D,JOCHEMS A C C,et al. Neuropsychiatric symptoms associated with cerebral small vessel disease:a systematic review and meta-analysis[J]. Lancet Psychiatry,2021,8(3):225-236. [27] JEERAKATHIL T,WOLF P A,BEISER A,et al. Stroke risk profile predicts white matter hyperintensity volume:the Framingham study[J]. Stroke,2004,35(8):1857-1861. [28] GOUW A A,SEEWANN A,VAN DER FLIER W M,et al. Heterogeneity of small vessel disease:a systematic review of MRI and histopathology correlations[J]. J Neurol Neurosurg Psychiatry,2011,82(2):126-135. [29] STEWART C R,STRINGER M S,SHI Y L,et al. Associations between white matter hyperintensity burden,cerebral blood flow and transit time in small vessel disease:an updated meta-analysis[J/OL]. Front Neurol,2021,12:647848[2023-12-12]. https://doi.org/10.3389/fneur.2021.647848. [30] BLAIR G W,THRIPPLETON M J,SHI Y L,et al. Intracranial hemodynamic relationships in patients with cerebral small vessel disease[J/OL]. Neurology,2020,94(21):e2258-e2269[2023-12-12]. https://doi.org/10.1212/WNL.0000000000009483. [31] PALTA P,SHARRETT A R,WEI J K,et al. Central arterial stiffness is associated with structural brain damage and poorer cognitive performance:the ARIC study[J/OL]. JAHA,2019,8(2):e011045[2023-12-12]. https://doi.org/10.1161/JAHA.118.011045. [32] KEITH J,GAO F Q,NOOR R,et al. Collagenosis of the deep medullary veins:an underrecognized pathologic correlate of white matter hyperintensities and periventricular infarction?[J]. J Neuropathol Exp Neurol,2017,76(4):299-312. [33] PHUAH C L,CHEN Y S,STRAIN J F,et al. Association of data-driven white matter hyperintensity spatial signatures with distinct cerebral small vessel disease etiologies[J/OL]. Neurology,2022,99(23):e2535-2547[2023-12-12]. https://doi.org/10.1212/WNL.0000000000201186. [34] WARDLAW J M. Prevalence of cerebral white matter lesions in elderly people:a population based magnetic resonance imaging study:the Rotterdam scan study[J]. J Neurol Neurosurg Psychiatry,2001,70(1):2-3. [35] JOCHEMS A C C,ARTEAGA C,CHAPPELL F,et al. Longitudinal changes of white matter hyperintensities in sporadic small vessel disease:a systematic review and meta-analysis[J/OL]. Neurology,2022,99(22):e2454-e2463[2023-12-12]. https://doi.org/10.1212/WNL.0000000000201205. [36] CAI M F,JACOB M A,VAN LOENEN M R,et al. Determinants and temporal dynamics of cerebral small vessel disease:14-year follow-up[J]. Stroke,2022,53(9):2789-2798. [37] FAZEKAS F,CHAWLUK J B,ALAVI A,et al. MR signal abnormalities at 1.5 T in Alzheimer’s dementia and normal aging[J]. AJR Am J Roentgenol,1987,149(2):351-356. [38] SCHELTENS P,BARKHOF F,LEYS D,et al. A semiquantative rating scale for the assessment of signal hyperintensities on magnetic resonance imaging[J]. J Neurol Sci,1993,114(1):7-12. [39] WAHLUND L O,BARKHOF F,FAZEKAS F,et al. A new rating scale for age-related white matter changes applicable to MRI and CT[J]. Stroke,2001,32(6):1318-1322. [40] CALIGIURI M E,PERROTTA P,AUGIMERI A,et al. Automatic detection of white matter hyperintensities in healthy aging and pathology using magnetic resonance imaging:a review[J]. Neuroinformatics,2015,13(3):261-276. [41] The SPRINT MIND Investigators for the SPRINT Research Group. Association of intensive vs. standard blood pressure control with cerebral white matter lesions[J]. JAMA,2019,322(6):524-534. [42] IP B Y M,LAM B Y K,HUI V M H,et al. Efficacy and safety of cilostazol in decreasing progression of cerebral white matter hyperintensities—a randomized controlled trial[J/OL]. Alzheimers Dement(N Y),2022,8(1):e12369[2023-12-12]. https://doi.org/10.1002/trc2.12369. [43] WOOLLAM D H,MILLEN J W. The perivascular spaces of the mammalian central nervous system and their relation to the perineuronal and subarachnoid spaces[J]. J Anat,1955,89(2):193-200. [44] ZHU Y C,DUFOUIL C,MAZOYER B,et al. Frequency and location of dilated Virchow-Robin spaces in elderly people:a population-based 3D MR imaging study[J]. AJNR Am J Neuroradiol,2011,32(4):709-713. [45] BARISANO G,SHEIKH-BAHAEI N,LAW M,et al. Body mass index,time of day and genetics affect perivascular spaces in the white matter[J]. J Cereb Blood Flow Metab,2021,41(7):1563-1578. [46] LAHNA D,SCHWARTZ D L,WOLTJER R,et al. Venous collagenosis as pathogenesis of white matter hyperintensity[J]. Ann Neurol,2022,92(6):992-1000. [47] GEORGE I C,ARRIGHI-ALLISAN A,DELMAN B N,et al. A novel method to measure venular perivascular spaces in patients with MS on 7 T MRI[J]. AJNR Am J Neuroradiol,2021,42(6):1069-1072. [48] JOCHEMS A C C,BLAIR G W,STRINGER M S,et al. Relationship between venules and perivascular spaces in sporadic small vessel diseases[J]. Stroke,2020,51(5):1503-1506. [49] POTTER G M,DOUBAL F N,JACKSON C A,et al. Enlarged perivascular spaces and cerebral small vessel disease[J]. Int J Stroke,2015,10(3):376-381. [50] DOUBAL F N,MACLULLICH A M J,FERGUSON K J,et al. Enlarged perivascular spaces on MRI are a feature of cerebral small vessel disease[J]. Stroke,2010,41(3):450-454. [51] LAU K K,LI L X,LOVELOCK C E,et al. Clinical correlates,ethnic differences,and prognostic implications of perivascular spaces in transient ischemic attack and ischemic stroke[J]. Stroke,2017,48(6):1470-1477. [52] FRANCIS F,BALLERINI L,WARDLAW J M. Perivascular spaces and their associations with risk factors,clinical disorders and neuroimaging features:a systematic review and meta-analysis[J]. Int J Stroke,2019,14(4):359-371. [53] CHARIDIMOU A,BOULOUIS G,FROSCH M P,et al. The Boston criteria version 2.0 for cerebral amyloid angiopathy:a multicentre,retrospective,MRI-neuropathology diagnostic accuracy study[J]. Lancet Neurol,2022,21(8):714-725. [54] CHARIDIMOU A,BOULOUIS G,PASI M,et al. MRI-visible perivascular spaces in cerebral amyloid angiopathy and hypertensive arteriopathy[J]. Neurology,2017,88(12):1157-1164. [55] PASSIAK B S,LIU D D,KRESGE H A,et al. Perivascular spaces contribute to cognition beyond other small vessel disease markers[J/OL]. Neurology,2019,92(12):e1309-e1321[2023-12-12]. https://doi.org/10.1212/WNL.0000000000007124. [56] PARADISE M,CRAWFORD J D,LAM B C P,et al. Association of dilated perivascular spaces with cognitive decline and incident dementia[J/OL]. Neurology,2021,96(11):e1501-e1511[2023-12-12]. https://doi.org/10.1212/WNL.0000000000011537. [57] HILAL S,TAN C S,ADAMS H H H,et al. Enlarged perivascular spaces and cognition:a meta-analysis of 5 population-based studies[J/OL]. Neurology,2018,91(9):e832-e842[2023-12-12]. https://doi.org/10.1212/WNL.0000000000006079. [58] POTTER G M,CHAPPELL F M,MORRIS Z,et al. Cerebral perivascular spaces visible on magnetic resonance imaging:development of a qualitative rating scale and its observer reliability[J]. Cerebrovasc Dis,2015,39(3/4):224-231. [59] DING J,SIGURÐSSON S,JÓNSSON P V,et al. Large perivascular spaces visible on magnetic resonance imaging,cerebral small vessel disease progression,and risk of dementia:the age,gene/environment susceptibility-Reykjavik study[J]. JAMA Neurol,2017,74(9):1105-1112. [60] WANG S Y,HUANG P Y,ZHANG R T,et al. Quantity and morphology of perivascular spaces:associations with vascular risk factors and cerebral small vessel disease[J]. J Magn Reson Imaging,2021,54(4):1326-1336. [61] BOESPFLUG E L,SCHWARTZ D L,LAHNA D,et al. MR imaging-based multimodal autoidentification of perivascular spaces(mMAPS):automated morphologic segmentation of enlarged perivascular spaces at clinical field strength[J]. Radiology,2018,286(2):632-642. [62] GREENBERG S M,VERNOOIJ M W,CORDONNIER C,et al. Cerebral microbleeds:a guide to detection and interpretation[J]. Lancet Neurol,2009,8(2):165-174. [63] LU D W,LIU J F,MACKINNON A D,et al. Prevalence and risk factors of cerebral microbleeds:an analysis from the UK Biobank[J/OL]. Neurology,2021,97(15):e149-e1502[2023-12-12]. https://doi.org/10.1212/WNL.0000000000012673. [64] AKOUDAD S,WOLTERS F J,VISWANATHAN A,et al. Association of cerebral microbleeds with cognitive decline and dementia[J]. JAMA Neurol,2016,73(8):934-943. [65] CHARIDIMOU A,IMAIZUMI T,MOULIN S,et al. Brain hemorrhage recurrence,small vessel disease type,and cerebral microbleeds:a meta-analysis[J]. Neurology,2017,89(8):820-829. [66] SHOAMANESH A,PEARCE L A,BAZAN C,et al. Microbleeds in the secondary prevention of small subcortical strokes trial:stroke,mortality,and treatment interactions[J]. Ann Neurol,2017,82(2):196-207. [67] WILSON D,AMBLER G,LEE K J,et al. Cerebral microbleeds and stroke risk after ischaemic stroke or transient ischaemic attack:a pooled analysis of individual patient data from cohort studies[J]. Lancet Neurol,2019,18(7):653-665. [68] O’DONNELL M J,EIKELBOOM J W,YUSUF S,et al. Effect of apixaban on brain infarction and microbleeds:AVERROES-MRI assessment study[J/OL]. Am Heart J,2016,178:145-150[2023-12-12]. https://doi.org/10.1016/j.ahj.2016.03.019. [69] AL-SHAHI SALMAN R,MINKS D P,MITRA D,et al. Effects of antiplatelet therapy on stroke risk by brain imaging features of intracerebral haemorrhage and cerebral small vessel diseases:subgroup analyses of the RESTART randomised,open-label trial[J]. Lancet Neurol,2019,18(7):643-652. [70] GREGOIRE S M,CHAUDHARY U J,BROWN M M,et al. The microbleed anatomical rating scale(MARS):reliability of a tool to map brain microbleeds[J]. Neurology,2009,73(21):1759-1766. [71] CORDONNIER C,POTTER G M,JACKSON C A,et al. improving interrater agreement about brain microbleeds:development of the brain observer microbleed scale(BOMBS)[J]. Stroke,2009,40(1):94-99. [72] LIU S F,UTRIAINEN D,CHAI C,et al. Cerebral microbleed detection using susceptibility weighted imaging and deep learning[J/OL]. Neuroimage,2019,198:271-282[2023-12-12]. https://doi.org/10.1016/j. neuroimage.2019.05.046. [73] FAZLOLLAHI A,MERIAUDEAU F,GIANCARDO L,et al. Computer-aided detection of cerebral microbleeds in susceptibility-weighted imaging[J/OL]. Comput Med Imaging Graph,2015,46 Pt 3:269-276[2023-12-12]. https://doi.org/10.1016/j. compmedimag.2015.10.001. [74] CHARIDIMOU A,LINN J,VERNOOIJ M W,et al. Cortical superficial siderosis:detection and clinical significance in cerebral amyloid angiopathy and related conditions[J/OL]. Brain,2015,138(Pt 8):2126-2139[2023-12-12]. https://doi.org/10.1093/brain/awv162. [75] KUMAR S,GODDEAU R P,Jr,SELIM M H,et al. Atraumatic convexal subarachnoid hemorrhage:clinical presentation,imaging patterns,and etiologies[J]. Neurology,2010,74(11):893-899. [76] LI Q,ZANON ZOTIN M C,WARREN A D,et al. CT-visible convexity subarachnoid hemorrhage is associated with cortical superficial siderosis and predicts recurrent ICH[J/OL]. Neurology,2021,96(7):e986-e994[2023-12-12]. https://doi.org/10.1212/WNL.0000000000011052. [77] VIGUIER A,RAPOSO N,PATSOURA S,et al. Subarachnoid and subdural hemorrhages in lobar intracerebral hemorrhage associated with cerebral amyloid angiopathy[J]. Stroke,2019,50(6):1567-1569. [78] SMITH E E,MAAS M B. To predict recurrence in cerebral amyloid angiopathy,look to the subarachnoid space[J]. Neurology,2020,94(9):375-376. [79] LINN J,HALPIN A,DEMAEREL P,et al. Prevalence of superficial siderosis in patients with cerebral amyloid angiopathy[J]. Neurology,2010,74(17):1346-1350. [80] KOEMANS E A,VOIGT S,RASING I,et al. Cerebellar superficial siderosis in cerebral amyloid angiopathy[J]. Stroke,2022,53(2):552-557. [81] CHARIDIMOU A,BOULOUIS G,ROONGPIBOONSOPIT D,et al. Cortical superficial siderosis and recurrent intracerebral hemorrhage risk in cerebral amyloid angiopathy:large prospective cohort and preliminary meta-analysis[J]. Int J Stroke,2019,14(7):723-733. [82] CHARIDIMOU A,BOULOUIS G,GREENBERG S M,et al. Cortical superficial siderosis and bleeding risk in cerebral amyloid angiopathy:a meta-analysis[J/OL]. Neurology,2019,93(24):e2192-e2202[2023-12-12]. https://doi.org/10.1212/WNL.0000000000008590. [83] BANERJEE G,WILSON D,AMBLER G,et al. Cognitive impairment before intracerebral hemorrhage is associated with cerebral amyloid angiopathy[J]. Stroke,2018,49(1):40-45. [84] XIONG L,CHARIDIMOU A,PASI M,et al. Predictors for late post-intracerebral hemorrhage dementia in patients with probable cerebral amyloid angiopathy[J]. J Alzheimers Dis,2019,71(2):435-442. [85] RAPOSO N,CHARIDIMOU A,ROONGPIBOONSOPIT D,et al. Convexity subarachnoid hemorrhage in lobar intracerebral hemorrhage:a prognostic marker[J/OL]. Neurology,2020,94(9):e968-e977[2023-12-12]. https://doi.org/10.1212/WNL.0000000000009036. [86] DAS A S,GOKCAL E,BIFFI A,et al. Mechanistic implications of cortical superficial siderosis in patients with mixed location intracerebral hemorrhage and cerebral microbleeds[J/OL]. Neurology,2023,101(6):e636-e644[2023-12-12]. https://doi.org/10.1212/WNL.0000000000207476. [87] TSAI H H,CHEN S J,TSAI L K,et al. Long-term vascular outcomes in patients with mixed location intracerebral hemorrhage and microbleeds[J/OL]. Neurology,2021,96(7):e995-e1004[2023-12-12]. https://doi.org/10.1212/WNL.0000000000011378. [88] CHARIDIMOU A,BOULOUIS G,XIONG L,et al. Cortical superficial siderosis and first-ever cerebral hemorrhage in cerebral amyloid angiopathy[J]. Neurology,2017,88(17):1607-1614. [89] MARTÍ-FÀBREGAS J,CAMPS-RENOM P,BEST J G,et al. Stroke risk and antithrombotic treatment during follow-up of patients with ischemic stroke and cortical superficial siderosis[J/OL]. Neurology,2023,100(12):e1267-e1281[2023-12-12]. https://doi.org/10.1212/WNL.0000000000201723. [90] CHARIDIMOU A,PEETERS A,FOX Z,et al. Spectrum of transient focal neurological episodes in cerebral amyloid angiopathy:multicentre magnetic resonance imaging cohort study and meta-analysis[J]. Stroke,2012,43(9):2324-2330. [91] HILKENS N A,VAN ASCH C J J,WERRING D J,et al. Predicting the presence of macrovascular causes in non-traumatic intracerebral haemorrhage:the DIAGRAM prediction score[J]. J Neurol Neurosurg Psychiatry,2018,89(7):674-679. [92] HOSTETTLER I C,SEIFFGE D J,WERRING D J. Intracerebral hemorrhage:an update on diagnosis and treatment[J]. Expert Rev Neurother,2019,19(7):679-694. [93] PANTONI L. Cerebral small vessel disease:from pathogenesis and clinical characteristics to therapeutic challenges[J]. Lancet Neurol,2010,9(7):689-701. [94] CHARIDIMOU A,SCHMITT A,WILSON D,et al. The cerebral haemorrhage anatomical rating instrument(CHARTS):development and assessment of reliability[J/OL]. J Neurol Sci,2017,372:178-183[2023-12-12]. https://doi.org/10.1016/j.jns. 2016.11.021. [95] RODRIGUES M A,SAMARASEKERA N,LERPINIERE C,et al. The Edinburgh CT and genetic diagnostic criteria for lobar intracerebral haemorrhage associated with cerebral amyloid angiopathy:model development and diagnostic test accuracy study[J]. Lancet Neurol,2018,17(3):232-240. [96] DUERING M,RIGHART R,WOLLENWEBER F A,et al. Acute infarcts cause focal thinning in remote cortex via degeneration of connecting fiber tracts[J]. Neurology,2015,84(16):1685-1692. [97] DE GUIO F,DUERING M,FAZEKAS F,et al. Brain atrophy in cerebral small vessel diseases:extent,consequences,technical limitations and perspectives:the HARNESS initiative[J]. J Cereb Blood Flow Metab,2020,40(2):231-245. [98] STAALS J,BOOTH T,MORRIS Z,et al. Total MRI load of cerebral small vessel disease and cognitive ability in older people[J]. Neurobiol Aging,2015,36(10):2806-2811. [99] ZHAO H Y,LIU Y,XIA Z X,et al. Diagnosis and assessment of apathy in elderly Chinese patients with cerebral small vessel disease[J/OL]. Front Psychiatry,2021,12:688685[2023-12-12]. https://doi.org/10.3389/fpsyt.2021.688685. [100] HOU Y T,LI Y,YANG S N,et al. Gait Impairment and upper extremity disturbance are associated with total magnetic resonance imaging cerebral small vessel disease burden[J/OL]. Front Aging Neurosci,2021,13:640844[2023-12-12]. https://doi.org/10.3389/fnagi.2021.640844. [101] YILMAZ P,IKRAM M K,NIESSEN W J,et al. Practical small vessel disease score relates to stroke,dementia,and death[J]. Stroke,2018,49(12):2857-2865. [102] STAALS J,MAKIN S D,DOUBAL F N,et al. Stroke subtype,vascular risk factors,and total MRI brain small-vessel disease burden[J]. Neurology,2014,83(14):1228-1234. [103] YANG S N,YUAN J,L QIN W,et al. Twenty-four-hour ambulatory blood pressure variability is associated with total magnetic resonance imaging burden of cerebral small-vessel disease[J/OL]. Clin Interv Aging,2018,13:1419-1427[2023-12-12]. https://doi.org/10.2147/CIA.S171261. [104] PARADISE M B,SHEPHERD C E,WEN W,et al. Neuroimaging and neuropathology indices of cerebrovascular disease burden:a systematic review[J]. Neurology,2018,91(7):310-320. [105] TER TELGTE A,WIEGERTJES K,GESIERICH B,et al. Temporal dynamics of cortical microinfarcts in cerebral small vessel disease[J]. JAMA Neurol,2020,77(5):643-647. [106] BRUNDEL M,DE BRESSER J,VAN DILLEN J J,et al. Cerebral microinfarcts:a systematic review of neuropathological studies[J]. J Cereb Blood Flow Metab,2012,32(3):425-436. [107] WESTOVER M B,BIANCHI M T,YANG C,et al. Estimating cerebral microinfarct burden from autopsy samples[J]. Neurology,2013,80(15):1365-1369. [108] SONNEN J A,LARSON E B,CRANE P K,et al. Pathological correlates of dementia in a longitudinal,population-based sample of aging[J]. Ann Neurol,2007,62(4):406-413. [109] VAN VELUW S J,SHIH A Y,SMITH E E,et al. Detection,risk factors,and functional consequences of cerebral microinfarcts[J]. Lancet Neurol,2017,16(9):730-740. [110] WIEGERTJES K,TER TELGTE A,OLIVEIRA P B,et al. The role of small diffusion-weighted imaging lesions in cerebral small vessel disease[J/OL]. Neurology,2019,93(17):e1627-e1634[2023-12-12]. https://doi.org/10.1212/WNL.0000000000008364. [111] CONKLIN J,SILVER F L,MIKULIS D J,et al. Are acute infarcts the cause of leukoaraiosis?Brain mapping for 16 consecutive weeks[J]. Ann Neurol,2014,76(6):899-904. [112] AURIEL E,EDLOW B L,REIJMER Y D,et al. Microinfarct disruption of white matter structure:a longitudinal diffusion tensor analysis[J]. Neurology,2014,83(2):182-188. [113] GREGOIRE S M,CHARIDIMOU A,GADAPA N,et al. Acute ischaemic brain lesions in intracerebral haemorrhage:multicentre cross-sectional magnetic resonance imaging study[J]. Brain,2011,134(8):2376-2386. [114] RAJA R,ROSENBERG G,CAPRIHAN A. Review of diffusion MRI studies in chronic white matter diseases[J/OL]. Neurosci Lett,2019,694:198-207[2023-12-12]. https://doi.org/10.1016/j.neulet.2018.12.007. [115] MAILLARD P,LU H,ARFANAKIS K,et al. Instrumental validation of free water,peak‐width of skeletonized mean diffusivity,and white matter hyperintensities:MarkVCID neuroimaging kits[J/OL]. Alzheimers Dement(Amst),2022,14(1):e12261[2023-12-12]. https://doi.org/10.1002/dad2.12261. [116] DEWENTER A,GESIERICH B,TER TELGTE A,et al. Systematic validation of structural brain networks in cerebral small vessel disease[J]. J Cereb Blood Flow Metab,2022,42(6):1020-1032. [117] FINSTERWALDER S,VLEGELS N,GESIERICH B,et al. Small vessel disease more than Alzheimer’s disease determines diffusion MRI alterations in memory clinic patients[J]. Alzheimers Dement,2020,16(11):1504-1514. [118] DEWENTER A,JACOB M A,CAI M,et al. Disentangling the effects of Alzheimer’s and small vessel disease on white matter fibre tracts[J]. Brain,2023,146(2):678-689. [119] WARDLAW J M,SMITH E E,BIESSELS G J,et al. Neuroimaging standards for research into small vessel disease and its contribution to ageing and neurodegeneration[J]. Lancet Neurol,2013,12(8):822-838. [120] KALARIA R N,SEPULVEDA-FALLA D. Cerebral small vessel disease in sporadic and Familial Alzheimer Disease[J]. Am J Pathol,2021,191(11):1888-1905. [121] AYTON S,FAZLOLLAHI A,BOURGEAT P,et al. Cerebral quantitative susceptibility mapping predicts amyloid-β-related cognitive decline[J]. Brain,2017,140(8):2112-2119. [122] QUARLES C C,BELL L C,STOKES A M. Imaging vascular and hemodynamic features of the brain using dynamic susceptibility contrast and dynamic contrast enhanced MRI[J/OL]. NeuroImage,2019,187:32-55[2023-12-12]. https://doi.org/10.1016/j.neuroimage. 2018.04.069. [123] ALSOP D C,DETRE J A,GOLAY X,et al. Recommended implementation of arterial spin-labeled perfusion MRI for clinical applications:a consensus of the ISMRM perfusion study group and the European consortium for ASL in dementia[J]. Magn Reson Med,2015,73(1):102-116. [124] STEWART C R,STRINGER M S,SHI Y L,et al. Associations between white matter hyperintensity burden,cerebral blood flow and transit time in small vessel disease:an updated meta-analysis[J/OL]. Front Neurol,2021,12 :647848[2023-12-12]. https://doi.org/10.3389/fneur.2021.647848. [125] SLEIGHT E,STRINGER M S,MARSHALL I,et al. Cerebrovascular reactivity measurement using magnetic resonance imaging:a systematic review[J/OL]. Front Physiol,2021,12 :643468[2023-12-12]. https://doi.org/10.3389/fphys.2021.643468. [126] VIKNER T,KARALIJA N,EKLUND A,et al. 5‐year associations among cerebral arterial pulsatility,perivascular space dilation,and white matter lesions[J]. Ann Neurol,2022,92(5):871-881. [127] THRIPPLETON M J,BACKES W H,SOURBRON S,et al. Quantifying blood‐brain barrier leakage in small vessel disease:review and consensus recommendations[J]. Alzheimers Dement,2019,15(6):840-858. [128] SMITH E E,BIESSELS G J,DE GUIO F,et al. Harmonizing brain magnetic resonance imaging methods for vascular contributions to neurodegeneration[J/OL]. Alzheimers Dement(Amst),2019,11:191-204[2023-12-12]. https://doi.org/10.1016/j.dadm.2019.01.002. [129] LU H,KASHANI A H,ARFANAKIS K,et al. MarkVCID cerebral small vessel consortium:Ⅱ. Neuroimaging protocols[J]. Alzheimers Dement,2021,17(4):716-725. [130] SMITH E E,DUCHESNE S,GAO F,et al. Vascular contributions to neurodegeneration:protocol of the COMPASS-ND study[J]. Can J Neurol Sci,2021,48(6):799-806. [131] BOUVY W H,BIESSELS G J,KUIJF H J,et al. Visualization of perivascular spaces and perforating arteries with 7 T magnetic resonance imaging[J]. Invest Radiol,2014,49(5):307-313. [132] VAN DEN BRINK H,DOUBAL F N,DUERING M. Advanced MRI in cerebral small vessel disease[J]. Int J Stroke,2023,18(1):28-35. [133] MAILLARD P,LU H,ARFANAKIS K,et al. Instrumental validation of free water,peak-width of skeletonized mean diffusivity,and white matter hyperintensities:MarkVCID neuroimaging kits[J/OL]. Alzheimers Dement(Amst),2022,14(1):e12261[2023-12-12]. https://doi.org/10.1002/dad2.12261.eCollection 2022. [134] KUIJF H J,BIESBROEK J M,DE BRESSER J,et al. Standardized assessment of automatic segmentation of white matter hyperintensities and results of the WMH segmentation challenge[J]. IEEE Trans Med Imaging,2019,38(11):2556-2568. [135] JOKINEN H,KOIKKALAINEN J,LAAKSO H M,et al. Global burden of small vessel disease-related brain changes on MRI predicts cognitive and functional decline[J]. Stroke,2020,51(1):170-178. [136] SCHIRMER M D,DALCA A V,SRIDHARAN R,et al. White matter hyperintensity quantification in large-scale clinical acute ischemic stroke cohorts—the MRI-GENIE study[J/OL]. Neuroimage Clin,2019,23:101884[2023-12-12]. https://doi.org/10.1016/j.nicl.2019.101884. |
[1] | 中国卒中学会医疗质量管理与促进分会, 《中英文标准化动脉粥样硬化性脑血管病术语中国专家共识》编写组. 中英文标准化动脉粥样硬化性脑血管病术语中国专家共识 [J]. 中国卒中杂志, 2024, 19(8): 973-977. |
[2] | 李之明, 王孜杰, 李琦. 2024美国卒中学会Code ICH脑出血早期一体化诊治方案专家共识解读[J]. 中国卒中杂志, 2024, 19(6): 714-724. |
[3] | 王伊龙. 脑小血管病的诊治现状及未来探索之路[J]. 中国卒中杂志, 2024, 19(4): 363-374. |
[4] | 胡琨, 管玲, 王伊龙. 不同神经心理症状与脑小血管病影像学关系的研究进展[J]. 中国卒中杂志, 2024, 19(4): 405-413. |
[5] | 杨营营, 王伊龙. 2013—2023年血管周围间隙相关研究的文献计量学分析[J]. 中国卒中杂志, 2024, 19(4): 414-422. |
[6] | 潘希娟, 邢英琦, 刘玉梅. 血管超声在脑小血管病中的应用进展[J]. 中国卒中杂志, 2024, 19(3): 343-348. |
[7] | 中国研究型医院学会神经眼科专业委员会, 陕西省研究型医院学会神经眼科专业委员会. 中国视网膜中央动脉阻塞临床诊疗专家共识[J]. 中国卒中杂志, 2024, 19(11): 1247-1267. |
[8] | 中国卒中学会神经介入分会. 急性缺血性卒中中等血管闭塞管理中国专家共识2024[J]. 中国卒中杂志, 2024, 19(11): 1333-1358. |
[9] | 代杰, 张素响, 赵沙沙, 张晓凤. 脑小血管病患者认知障碍影响因素分析及列线图模型的构建与验证[J]. 中国卒中杂志, 2024, 19(10): 1136-1142. |
[10] | 祖煜, 于莎莎, 张玉婧, 吕晶, 冯雪丹. HTRA1基因杂合突变相关遗传性脑小血管病1例并文献复习[J]. 中国卒中杂志, 2023, 18(9): 1054-1059. |
[11] | 朱小鸳, 郝贵生. 脑小血管病与头晕症状关系的研究进展[J]. 中国卒中杂志, 2023, 18(8): 940-946. |
[12] | 中国卒中学会神经介入分会. 始发表现为轻型卒中的急性大血管闭塞的血管内治疗中国专家共识2023[J]. 中国卒中杂志, 2023, 18(12): 1429-1449. |
[13] | 陈嫄, 周玉颖, 李攀. 以精神行为异常为突出表现的遗传性脑小血管病1例报道[J]. 中国卒中杂志, 2023, 18(11): 1248-1254. |
[14] | 叶瑾怡, 王赞, 龚宇田, 郭蕾, 果彤, 胡琨, 陆瑶, 单舒乙, 王玲, 悦芳芳, 朱婧涵, 郑欣雅, 陈玮琪, 王伊龙. 脑小血管病研究的神经影像学标准STRIVE-2——自2013年以来的新进展[J]. 中国卒中杂志, 2023, 18(10): 1160-1174. |
[15] | 叶瑾怡, 陈玮琪, 王伊龙. 脑小血管病国际影像标准2更新要点解读[J]. 中国卒中杂志, 2023, 18(10): 1175-1180. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||