Chinese Journal of Stroke ›› 2025, Vol. 20 ›› Issue (8): 950-957.DOI: 10.3969/j.issn.1673-5765.2025.08.003
Previous Articles Next Articles
XIONG Yuting1, WANG Chunjuan1,2
Received:
2025-05-06
Revised:
2025-08-02
Accepted:
2025-08-04
Online:
2025-08-20
Published:
2025-08-20
Contact:
WANG Chunjuan, E-mail: wangchunjuan@ncrcnd.org.cn
熊俞婷1,王春娟1,2
通讯作者:
王春娟 wangchunjuan@ncrcnd.org.cn
基金资助:
CLC Number:
XIONG Yuting, WANG Chunjuan. Advances in the Application of Artificial Intelligence in Neurological Disorders[J]. Chinese Journal of Stroke, 2025, 20(8): 950-957.
熊俞婷, 王春娟. 人工智能在神经系统疾病中的应用进展[J]. 中国卒中杂志, 2025, 20(8): 950-957.
[1] GBD 2021 Diseases and Injuries Collaborators. Global incidence,prevalence,years lived with disability(YLDs),disability-adjusted life-years(DALYs),and healthy life expectancy(HALE)for 371 diseases and injuries in 204 countries and territories and 811 subnational locations,1990-2021:a systematic analysis for the global burden of disease study 2021[J]. Lancet,2024,403(10440):2133-2161. [2] GBD 2019 Diseases and Injuries Collaborators. Global burden of 369 diseases and injuries in 204 countries and territories,1990-2019:a systematic analysis for the global burden of disease study 2019[J]. Lancet,2020,396(10258):1204-1222. [3] GBD 2016 Neurology Collaborators. Global,regional,and national burden of neurological disorders, 1990-2016:a systematic analysis for the global burden of disease study 2016[J]. Lancet Neurol,2019,18(5):459-480. [4] SARIKAYA H,FERRO J,ARNOLD M. Stroke prevention—medical and lifestyle measures[J]. Eur Neurol,2015,73(3/4):150-157. [5] DUFOUIL C,BEISER A,MCLURE L A,et al. Revised Framingham stroke risk profile to reflect temporal trends[J]. Circulation,2017,135(12):1145-1159. [6] GRUNDY S M,D’AGOSTINO R B,Sr,MOSCA L,et al. Cardiovascular risk assessment based on US cohort studies:findings from a National Heart,Lung,and Blood Institute workshop[J]. Circulation,2001,104(4):491-496. [7] PARMAR P,KRISHNAMURTHI R,IKRAM M A,et al. The Stroke RiskometerTM app:validation of a data collection tool and stroke risk predictor[J]. Int J Stroke,2015,10(2):231-244. [8] WOLF P A,D’AGOSTINO R B,BELANGER A J,et al. Probability of stroke:a risk profile from the Framingham study[J]. Stroke,1991,22(3):312-318. [9] CHUN M,CLARKE R,CAIRNS B J,et al. Stroke risk prediction using machine learning:a prospective cohort study of 0.5 million Chinese adults[J]. J Am Med Inform Assoc,2021,28(8):1719-1727. [10] YANG L,YANG X,GONG Z H,et al. Deep learning-based automatic segmentation of arterial vessel walls and plaques in MR vessel wall images for quantitative assessment[J/OL]. Eur Radiol,2025[2025-07-12]. https://doi.org/10.1007/s00330-025-11697-9. [11] LI X,LIU H F,DU X,et al. Integrated machine learning approaches for predicting ischemic stroke and thromboembolism in atrial fibrillation[J/OL]. AMIA Annu Symp Proc,2017,2016:799-807[2025-07-12]. https://pubmed.ncbi.nlm.nih.gov/28269876. [12] SHAROBEAM A,SHOKRI M J,DESAI N,et al. Detecting atrial fibrillation by artificial intelligence-enabled neuroimaging examination[J/OL]. Cerebrovasc Dis,2025:1-10[2025-07-12]. https://doi.org/10.1159/000543042. [13] ZENG L,WEN L,JING Y,et al. Assessment of the stability of intracranial aneurysms using a deep learning model based on computed tomography angiography[J]. Radiol Med,2025,130(2):248-257. [14] AMINI S,HAO B R,YANG J M,et al. Prediction of Alzheimer’s disease progression within 6 years using speech:a novel approach leveraging language models[J]. Alzheimers Dement,2024,20(8):5262-5270. [15] PARK J H,CHO H E,KIM J H,et al. Machine learning prediction of incidence of Alzheimer’s disease using large-scale administrative health data[J/OL]. NPJ Digit Med,2020,3:46[2025-07-12]. https://doi.org/10.1038/s41746-020-0256-0. [16] ZHANG Z C,ZHAO X Z,DONG G Y,et al. Improving Alzheimer’s disease diagnosis with multi-modal PET embedding features by a 3D multi-task MLP-Mixer neural network[J]. IEEE J Biomed Health Inform,2023,27(8):4040-4051. [17] BOUMAN P M,NOTEBOOM S,NOBREGA SANTOS F A,et al. Multicenter evaluation of AI-generated DIR and PSIR for cortical and juxtacortical multiple sclerosis lesion detection[J/OL]. Radiology,2023,307(2):e221425[2025-07-12]. https://doi.org/10.1148/radiol.221425. [18] WEI R,XU X L,DUAN Y Y,et al. Brain age gap in neuromyelitis optica spectrum disorders and multiple sclerosis[J]. J Neurol Neurosurg Psychiatry,2023,94(1):31-37. [19] WOTTSCHEL V,ALEXANDER D C,KWOK P P,et al. Predicting outcome in clinically isolated syndrome using machine learning[J/OL]. Neuroimage Clin,2014,7:281-287[2025-07-12]. https://doi.org/10.1016/j.nicl.2014.11.021. [20] FIEST K M,SAURO K M,WIEBE S,et al. Prevalence and incidence of epilepsy:a systematic review and meta-analysis of international studies[J]. Neurology,2017,88(3):296-303. [21] COOK M J,O’BRIEN T J,BERKOVIC S F,et al. Prediction of seizure likelihood with a long-term,implanted seizure advisory system in patients with drug-resistant epilepsy:a first-in-man study[J]. Lancet Neurol,2013,12(6):563-571. [22] STACEY W C. Seizure prediction is possible—now let’s make it practical[J/OL]. EBioMedicine,2018,27:3-4[2025-07-12]. https://doi.org/10.1016/j.ebiom.2018.01.006. [23] CHU H,CHUNG C K,JEONG W,et al. Predicting epileptic seizures from scalp EEG based on attractor state analysis[J/OL]. Comput Methods Programs Biomed,2017,143:75-87[2025-07-12]. https://doi.org/10.1016/j.cmpb.2017.03.002. [24] MUHAMMAD USMAN S,KHALID S,BASHIR S. A deep learning based ensemble learning method for epileptic seizure prediction[J/OL]. Comput Biol Med,2021,136:104710[2025-07-12]. https://doi.org/10.1016/j.compbiomed.2021.104710. [25] HEIT J J,COELHO H,LIMA F O,et al. Automated cerebral hemorrhage detection using RAPID[J]. AJNR Am J Neuroradiol,2021,42(2):273-278. [26] SREEKRISHNAN A,GIURGIUTIU D V,KITAMURA F,et al. Decreasing false-positive detection of intracranial hemorrhage(ICH)using RAPID ICH 3[J/OL]. J Stroke Cerebrovasc Dis,2023,32(12):107396[2025-07-12]. https://doi.org/10.1016/j.jstrokecerebrovasdis.2023.107396. [27] CHOI H,HA S,IM H J,et al. Refining diagnosis of Parkinson’s disease with deep learning-based interpretation of dopamine transporter imaging[J/OL]. Neuroimage Clin,2017,16:586-594[2025-07-12]. https://doi.org/10.1016/j.nicl.2017.09.010. [28] SEGOVIA F,ILLÁN I A,GÓRRIZ J M,et al. Distinguishing Parkinson’s disease from atypical parkinsonian syndromes using PET data and a computer system based on support vector machines and Bayesian networks[J/OL]. Front Comput Neurosci,2015,9:137[2025-07-12]. https://doi.org/10.3389/fncom.2015.00137. [29] TVEIT J,AURLIEN H,PLIS S,et al. Automated interpretation of clinical electroencephalograms using artificial intelligence[J]. JAMA Neurol,2023,80(8):805-812. [30] ACHARYA U R,OH S L,HAGIWARA Y,et al. Deep convolutional neural network for the automated detection and diagnosis of seizure using EEG signals[J/OL]. Comput Biol Med,2018,100:270-278[2025-07-12]. https://doi.org/10.1016/j.compbiomed.2017.09.017. [31] HAQUE F,REAZ M B I,CHOWDHURY M E H,et al. Performance analysis of conventional machine learning algorithms for diabetic sensorimotor polyneuropathy severity classification using nerve conduction studies[J/OL]. Comput Intell Neurosci,2022,2022:9690940[2025-07-12]. https://doi.org/10.1155/2022/9690940. [32] SINISCALCHI A,INGHINGOLO V,LOCHNER P,et al. Artificial intelligence in transcranial Doppler ultrasonography[J/OL]. Curr Med Imaging,2025,21:e15734056331493[2025-07-12]. https://doi.org/10.2174/0115734056331493241217075436. [33] CLARE K,STEIN A,DAMODARA N,et al. Safety and efficacy of a novel robotic transcranial Doppler system in subarachnoid hemorrhage[J/OL]. Sci Rep,2022,12(1):2266[2025-07-12]. https://doi.org/10.1038/s41598-021-04751-1. [34] BERA K,SCHALPER K A,RIMM D L,et al. Artificial intelligence in digital pathology—new tools for diagnosis and precision oncology[J]. Nat Rev Clin Oncol,2019,16(11):703-715. [35] CHEN D F,NAUEN D W,PARK H C,et al. Label-free imaging of human brain tissue at subcellular resolution for potential rapid intra-operative assessment of glioma surgery[J]. Theranostics,2021,11(15):7222-7234. [36] 平轶芳,闫红,卞修武. 人工智能病理在肿瘤精准医疗时代的应用与挑战[J]. 生命科学,2022,34(8):929-940. PING Y F,YAN H,BIAN X W. Artificial intelligence pathology in the age of oncology precision medicine:applications and challenges[J] Chinese Bulletin of Life Sciences,2022,34(8):929-940. [37] JIN L,SHI F,CHUN Q P,et al. Artificial intelligence neuropathologist for glioma classification using deep learning on hematoxylin and eosin stained slide images and molecular markers[J]. Neuro Oncol,2021,23(1):44-52. [38] SHI L T,SHEN L,JIAN J M,et al. Contribution of whole slide imaging-based deep learning in the assessment of intraoperative and postoperative sections in neuropathology[J/OL]. Brain Pathol,2023,33(4):e13160[2025-07-12]. https://doi.org/10.1111/bpa.13160. [39] HASSAN A E,RINGHEANU V M,RABAH R R,et al. Early experience utilizing artificial intelligence shows significant reduction in transfer times and length of stay in a hub and spoke model[J]. Interv Neuroradiol,2020,26(5):615-622. [40] HO K C,SPEIER W,ZHANG H Y,et al. A machine learning approach for classifying ischemic stroke onset time from imaging[J]. IEEE Trans Med Imaging,2019,38(7):1666-1676. [41] LI Z X,ZHANG X M,DING L L,et al. Rationale and design of the GOLDEN BRIDGE Ⅱ:a cluster-randomised multifaceted intervention trial of an artificial intelligence-based cerebrovascular disease clinical decision support system to improve stroke outcomes and care quality in China[J]. Stroke Vasc Neurol,2024,9(6):723-729. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||