Chinese Journal of Stroke ›› 2025, Vol. 20 ›› Issue (8): 950-957.DOI: 10.3969/j.issn.1673-5765.2025.08.003

Previous Articles     Next Articles

Advances in the Application of Artificial Intelligence in Neurological Disorders

XIONG Yuting1, WANG Chunjuan1,2    

  1. 1 Department of Neurology, Beijing Tiantan Hospital, Capital Medical University, Beijing 100070, China
    2 China National Clinical Research Center for Neurological Diseases, Beijing 100070, China
  • Received:2025-05-06 Revised:2025-08-02 Accepted:2025-08-04 Online:2025-08-20 Published:2025-08-20
  • Contact: WANG Chunjuan, E-mail: wangchunjuan@ncrcnd.org.cn

人工智能在神经系统疾病中的应用进展

熊俞婷1,王春娟1,2   

  1. 1 北京 100070 首都医科大学附属北京天坛医院神经病学中心 
    2 国家神经系统疾病临床医学研究中心
  • 通讯作者: 王春娟 wangchunjuan@ncrcnd.org.cn
  • 基金资助:
    国家重点研发计划(2022YFC2504900)

Abstract: Artificial intelligence (AI) is a crucial branch of computer science, having achieved significant breakthroughs in recent years, driven by advancements in deep learning and big data processing technologies. China faces the dual challenges of uneven distribution of medical resources and the growing demands for health management. The integration of AI technology with clinical medicine provides innovative solutions for addressing these challenges. Neurological disorders pose difficulties in early diagnosis, and limitations in treatment due to their complex pathological mechanisms. The challenges in individualized diagnosis and patient management are particularly prominent. This article systematically reviews advances in AI applications in risk prediction, diagnosis, and treatment of neurological disorders, explores the technical, ethical, and data security challenges encountered in neuroscience implementations, and proposes feasible solutions. This article aims to provide references for promoting the clinical translation of AI technology in the field of neuroscience.

Key words: Artificial intelligence; Stroke; Neurological disorder; Clinical decision support system

摘要: 人工智能(artificial intelligence,AI)作为计算机科学领域的重要分支,近年来依托深度学习和大数据处理技术取得了突破性进展。我国面临医疗资源分配不均与健康管理需求日益增长的双重挑战,AI技术与临床医学的交叉融合为应对这些挑战提供了创新方案。神经系统疾病因病理机制复杂,导致其早期诊断困难、治疗手段有限,在个体化诊疗与患者管理等方面的挑战尤为突出。本文系统回顾了AI技术在神经系统疾病风险预测与诊疗中的应用进展,探讨了其在神经科学领域面临的技术、伦理及数据安全等挑战,并提出了可行的解决方案,为推进AI技术在神经科学领域的临床转化提供参考。

关键词: 人工智能; 卒中; 神经系统疾病; 临床决策支持系统

CLC Number: