Efficacy of Motor Imagery-Based Rehabilitation Brain-Computer Interface Combined with Repetitive Peripheral Magnetic Stimulation on Upper Limb Motor Function in Patients with Convalescent Phase after Stroke
LI Xin1,2, WANG Dong2, SHI Shimeng2,3, CHEN Yun4, HE Zhijie5, JIA Jie1,5
1 Department of Rehabilitation Medicine, The First Affiliated Hospital of Henan Medical University, Xinxiang 453000, China
2 Department of Rehabilitation Medicine, Affiliated Hospital of Chengdu University, Chengdu 610081, China
3 College of Physical Education of Chengdu University, Chengdu 610000, China
4 Department of Rehabilitation Medicine, Fujian Hospital, Huashan Hospital, Fudan University, Fuzhou 350000, China
5 Department of Rehabilitation Medicine, Huashan Hospital, Fudan University, Shanghai 200040, China
LI Xin, WANG Dong, SHI Shimeng, CHEN Yun, HE Zhijie, JIA Jie. Efficacy of Motor Imagery-Based Rehabilitation Brain-Computer Interface Combined with Repetitive Peripheral Magnetic Stimulation on Upper Limb Motor Function in Patients with Convalescent Phase after Stroke[J]. Chinese Journal of Stroke, 2025, 20(10): 1229-1236.
[1]《中国脑卒中防治报告2021》编写组. 《中国脑卒中防治报告2021》概要[J]. 中国脑血管病杂志,2023,20(11):783-792,封3.
Report on Stroke Prevention and Treatment in China Writing Group. Brief report on stroke prevention and treatment in China,2021[J]. Chin J Cerebrovasc Dis,2023,20(11):783-792,inside back cover 3.
[2] LIU X L,ZHANG W D,LI W B,et al. Effects of motor imagery based brain-computer interface on upper limb function and attention in stroke patients with hemiplegia:a randomized controlled trial[J/OL]. BMC Neurol,2023,23(1):136[2025-07-14]. https://doi.org/10.1186/s12883-023-03150-5.
[3] GHAZIANI E,COUPPÉ C,SIERSMA V,et al. Electrical somatosensory stimulation in early rehabilitation of arm paresis after stroke:a randomized controlled trial[J]. Neurorehabil Neural Repair,2018,32(10):899-912.
[4] ANWER S,WARIS A,GILANI S O,et al. Rehabilitation of upper limb motor impairment in stroke:a narrative review on the prevalence,risk factors,and economic statistics of stroke and state of the art therapies[J/OL]. Healthcare(Basel),2022,10(2):190[2025-07-14]. https://doi.org/10.3390/healthcare10020190.
[5] 桑振华,薛司洋,魏宸铭,等. 基于脑机接口的脑血管病后肢体运动功能康复研究进展[J]. 中国卒中杂志,2025,20(1):63-69.
SANG Z H,XUE S Y,WEI C M,et al. Research progress of limb motor function rehabilitation after cerebrovascular diseases based on brain-computer interface[J]. Chin J Stroke,2025,20(1):63-69.
[6] HUGGINS J E,GUGER C,ZIAT M,et al. Workshops of the sixth international brain-computer interface meeting:brain-computer interfaces past,present,and future[J]. Brain Comput Interfaces(Abingdon),2017,4(1/2):3-36.
[7] 燕桢,张立新. 脑机接口在康复治疗中的应用[J]. 中国康复医学杂志,2020,35(2):228-232.
YAN Z,ZHANG L X. Application of brain-computer interface in rehabilitation therapy[J]. Chinese Journal of Rehabilitation Medicine,2020,35(2):228-232.
[8] 谭雅菲. 重复经颅磁刺激联合脑机接口对脑卒中患者上肢运动功能的影响[D]. 石家庄:河北医科大学,2022.
TAN Y F. The effects of repetitive transcranial magnetic stimulation combined with brain-machine interface on upper limb motor function in stroke patients[D]. Shijiazhuang:Hebei Medical University,2022.
[9] 梁天佳,龙耀斌,陆丽燕,等. 绳带辅助本体感觉神经肌肉促进技术训练联合绳带辅助脑机接口训练对脑卒中偏瘫上肢康复效果的随机对照试验[J]. 中国康复理论与实践,2024,30(8):972-978.
LIANG T J,LONG Y B,LU L Y,et al. Effect of rope-assisted proprioceptive neuromuscular facilitation combined with rope-assisted brain-computer interface training on upper limb function in stroke patients with hemiplegia:a randomized controlled trial[J]. Chin J Rehabil Theory Pract,2024,30(8):972-978.
[10] 贾杰.“中枢-外周-中枢”闭环康复——脑卒中后手功能康复新理念[J]. 中国康复医学杂志,2016,31(11):1180-1182.
JIA J.“Central-peripheral-central”closed-loop rehabilitation—a novel concept for hand function rehabilitation after stroke[J]. Chinese Journal of Rehabilitation Medicine,2016,31(11):1180-1182.
[11] 中华医学会神经病学分会,中华医学会神经病学分会脑血管病学组. 中国急性缺血性脑卒中诊治指南2018[J]. 中华神经科杂志,2018,51(9):666-682.
Chinese Society of Neurology,Chinese Stroke Society. Chinese guidelines for diagnosis and treatment of acute ischemic stroke 2018[J]. Chin J Neurol,2018,51(9):666-682.
[12] QING Z Y,LU Z X,CAI Y J,et al. Elements influencing sEMG-based gesture decoding:muscle fatigue,forearm angle and acquisition time[J/OL]. Sensors(Basel),2021,21(22):7713[2025-07-14]. https://doi.org/10.3390/s21227713.
[13] MCMANUS L,DE VITO G,LOWERY M M. Analysis and biophysics of surface EMG for physiotherapists and kinesiologists:toward a common language with rehabilitation engineers[J/OL]. Front Neurol,2020,11:576729[2025-07-14]. https://doi.org/10.3389/fneur.2020.576729.
[14] JIA J. Exploration on neurobiological mechanisms of the central-peripheral-central closed-loop rehabilitation[J/OL]. Front Cell Neurosci,2022,16:982881[2025-07-14]. https://doi.org/10.3389/fncel.2022.982881.
[15] 徐硕,贾杰.“中枢-外周-中枢”闭环康复——脑卒中后手功能康复新理念的临床应用进展[J]. 中国康复医学杂志,2024,39(10):1537-1541.
XU S,JIA J.“Central-peripheral-central”closed-loop rehabilitation—advances in the clinical application of a novel concept for post-stroke hand function rehabilitation[J]. Chinese Journal of Rehabilitation Medicine,2024,39(10):1537-1541.
[16] SAWAY B F,PALMER C,HUGHES C,et al. The evolution of neuromodulation for chronic stroke:from neuroplasticity mechanisms to brain-computer interfaces[J/OL]. Neurotherapeutics,2024,21(3):e00337[2025-07-14]. https://doi.org/10.1016/j.neurot.2024.e00337.
[17] MA Z Z,WU J J,CAO Z,et al. Motor imagery-based brain-computer interface rehabilitation programs enhance upper extremity performance and cortical activation in stroke patients[J/OL]. J Neuroeng Rehabil,2024,21(1):91[2025-07-14]. https://doi.org/10.1186/s12984-024-01387-w.
[18] YUAN K,WANG X,CHEN C,et al. Interhemispheric functional reorganization and its structural base after BCI-guided upper-limb training in chronic stroke[J]. IEEE Trans Neural Syst Rehabil Eng,2020,28(11):2525-2536.
[19] VOURVOPOULOS A,JORGE C,ABREU R,et al. Efficacy and brain imaging correlates of an immersive motor imagery BCI-driven VR system for upper limb motor rehabilitation:a clinical case report[J/OL]. Front Hum Neurosci,2019,13:244[2025-07-14]. https://doi.org/10.3389/fnhum.2019.00244.
[20] CARIA A,DA ROCHA J L D,GALLITTO G,et al. Brain-machine interface induced morpho-functional remodeling of the neural motor system in severe chronic stroke[J]. Neurotherapeutics,2020,17(2):635-650.
[21] 张志远,黄路,张江春,等. 重复外周磁刺激在神经康复中的应用参数和作用机制的研究进展[J]. 中华物理医学与康复杂志,2023,45(10):942-947.
ZHANG Z Y,HUANG L,ZHANG J C,et al. Research progress on the application parameters and mechanisms of repetitive peripheral magnetic stimulation in neurological rehabilitation[J]. Chin J Phys Med Rehabil,2023,45(10):942-947.
[22] ZSCHORLICH V,YAMAGUCHI T,SCHNEIDER C. The use of repetitive peripheral magnetic stimulation(rPMS)in neurological disorders and neurorehabilitation[J/OL]. Front Neurol,2023,14:1324882[2025-07-14]. https://doi.org/10.3389/fneur.2023.1324882.
[23] ASAO A,WADA K,NOMURA T,et al. Time course changes in corticospinal excitability during repetitive peripheral magnetic stimulation combined with motor imagery[J/OL]. Neurosci Lett,2022,771:136427[2025-07-14]. https://doi.org/10.1016/j.neulet.2021.136427.
[24] GALLASCH E,CHRISTOVA M,KUNZ A,et al. Modulation of sensorimotor cortex by repetitive peripheral magnetic stimulation[J/OL]. Front Hum Neurosci,2015,9:407[2025-07-14]. https://doi.org/10.3389/fnhum.2015.00407.
[25] PAN J X,DIAO Y X,PENG H Y,et al. Effects of repetitive peripheral magnetic stimulation on spasticity evaluated with modified Ashworth scale/Ashworth scale in patients with spastic paralysis:a systematic review and meta-analysis[J/OL]. Front Neurol,2022,13:997913[2025-07-14]. https://doi.org/10.3389/fneur.2022.997913.
[26] CHEN S G,LI Y,SHU X K,et al. Electroencephalography Mu rhythm changes and decreased spasticity after repetitive peripheral magnetic stimulation in patients following stroke[J/OL]. Front Neurol,2020,11:546599[2025-07-14]. https://doi.org/10.3389/fneur.2020.546599.
[27] NICOLELIS M A L,ALHO E J L,DONATI A R C,et al. Training with noninvasive brain-machine interface,tactile feedback,and locomotion to enhance neurological recovery in individuals with complete paraplegia:a randomized pilot study[J/OL]. Sci Rep,2022,12(1):20545[2025-07-14]. https://doi.org/10.1038/s41598-022-24864-5.
[28]GRIGOREV N A,SAVOSENKOV A O,LUKOYANOV M V,et al. A BCI-based vibrotactile neurofeedback training improves motor cortical excitability during motor imagery[J/OL]. IEEE Trans Neural Syst Rehabil Eng,2021,29:1583-1592[2025-07-14]. https://doi.org/10.1109/TNSRE.2021.3102304.