Chinese Journal of Stroke ›› 2023, Vol. 18 ›› Issue (04): 388-395.DOI: 10.3969/j.issn.1673-5765.2023.04.003
Previous Articles Next Articles
Received:
2022-12-10
Online:
2023-04-20
Published:
2023-04-20
韩颖, 周宏宇, 李子孝
通讯作者:
李子孝 lizixiao2008@hotmail.com
HAN Ying, ZHOU Hongyu, LI Zixiao. Progress of the Relationship between DNA Methylation and Hyperlipidemia[J]. Chinese Journal of Stroke, 2023, 18(04): 388-395.
韩颖, 周宏宇, 李子孝. DNA甲基化与高脂血症的关系研究进展[J]. 中国卒中杂志, 2023, 18(04): 388-395.
[1] TADA H,WON H H,MELANDER O,et al. Multiple associated variants increase the heritability explained for plasma lipids and coronary artery disease[J]. Circ Cardiovasc Genet,2014,7(5):583-587. [2] WILLER C J,SCHMIDT E M,SENGUPTA S,et al. Discovery and refinement of loci associated with lipid levels[J]. Nat Genet,2013,45(11):1274-1283. [3] GUAY S P,BRISSON D,LAMARCHE B,et al. ADRB3 gene promoter DNA methylation in blood and visceral adipose tissue is associated with metabolic disturbances in men[J]. Epigenomics,2014,6(1):33-43. [4] ALSALEH A,SANDERS T A,O’DELL S D. Effect of interaction between PPARG,PPARA and ADIPOQ gene variants and dietary fatty acids on plasma lipid profile and adiponectin concentration in a large intervention study[J]. Proc Nutr Soc,2012,71(1):141-153. [5] PATTERSON A D,SLANAR O,KRAUSZ K W,et al. Human urinary metabolomic profile of PPARalpha induced fatty acid beta-oxidation[J]. J Proteome Res,2009,8(9):4293-300. [6] LAI C Q,WOJCZYNSKI M K,PARNELL L D,et al. Epigenome-wide association study of triglyceride postprandial responses to a high-fat dietary challenge[J]. J Lipid Res,2016,57(12):2200-2207. [7] PFEIFFER L,WAHL S,PILLING L C,et al. DNA methylation of lipid-related genes affects blood lipid levels[J]. Circ Cardiovasc Genet,2015,8(2):334-342. [8] BRAUN K V E,DHANA K,DE VRIES P S,et al. Epigenome-wide association study(EWAS)on lipids:the Rotterdam study[J/OL]. Clin Epigenetics,2017,9:15[2022-12-10]. https://doi.org/10.1186/s13148-016-0304-4. [9] REESKAMP L F,VENEMA A,PEREIRA J P B,et al. Differential DNA methylation in familial hypercholesterolemia[J/OL]. EBioMedicine,2020,61:103079[2022-11-12]. https://doi.org/10.1016/j.ebiom.2020.103079. [10] DEKKERS K F,SLAGBOOM P E,JUKEMA J W,et al. The multifaceted interplay between lipids and epigenetics[J]. Curr Opin Lipidol,2016,27(3):288-294. [11] SMITH G D,EBRAHIM S. ‘Mendelian randomization’:can genetic epidemiology contribute to understanding environmental determinants of disease?[J]. Int J Epidemiol,2003,32(1):1-22. [12] DEKKERS K F,VAN ITERSON M,SLIEKER R C,et al. Blood lipids influence DNA methylation in circulating cells[J/OL]. Genome Biol,2016,17(1):138[2022-11-12]. https://doi.org/10.1186/s13059-016-1000-6. [13] ZAGHLOOL S B,MOOK-KANAMORI D O,KADER S,et al. Deep molecular phenotypes link complex disorders and physiological insult to CpG methylation[J]. Hum Mol Genet,2018,27(6):1106-1121. [14] SAYOLS-BAIXERAS S,TIWARI H K,ASLIBEKYAN S W. Disentangling associations between DNA methylation and blood lipids:a Mendelian randomization approach[J/OL]. BMC Proc,2018,12(Suppl 9):23[2022-11-12]. https://doi.org/10.1186/s12919-018-0119-8. [15] FRAMBACH S J C M,DE HAAS R,SMEITINK J A M,et al. Brothers in arms:ABCA1-and ABCG1-mediated cholesterol efflux as promising targets in cardiovascular disease treatment[J]. Pharmacol Rev,2020,72(1):152-190 . [16] NUOTIO M L,PERVJAKOVA N,JOENSUU A,et al. An epigenome-wide association study of metabolic syndrome and its components[J/OL]. Sci Rep,2020,10(1):20567[2022-11-12]. https://doi.org/10.1038/s41598-020-77506-z. [17] GOMEZ-ALONSO M D C,KRETSCHMER A,WILSON R,et al. DNA methylation and lipid metabolism:an EWAS of 226 metabolic measures[J/OL]. Clin Epigenetics,2021,13(1):7[2022-11-12]. https://doi.org/10.1186/s13148-020-00957-8. [18] GUAY S P,BRISSON D,LAMARCHE B,et al. Epipolymorphisms within lipoprotein genes contribute independently to plasma lipid levels in familial hypercholesterolemia[J]. Epigenetics,2014,9(5):718-729. [19] CAMPANELLA G,GUNTER M J,POLIDORO S,et al. Epigenome-wide association study of adiposity and future risk of obesity-related diseases[J]. Int J Obes(Lond),2018,42(12):2022-2035. [20] OLIVIER M,TANCK M W,OUT R,et al. Human ATP-binding cassette G1 controls macrophage lipoprotein lipase bioavailability and promotes foam cell formation[J]. Arterioscler Thromb Vasc Biol,2012,32(9):2223-2231. [21] GELISSEN I C,HARRIS M,RYE K A,et al. ABCA1 and ABCG1 synergize to mediate cholesterol export to ApoA-I[J]. Arterioscler Thromb Vasc Biol,2006,26(3):534-540. [22] AN F,LIU C,WANG X J,et al. Effect of ABCA1 promoter methylation on premature coronary artery disease and its relationship with inflammation[J/OL]. BMC Cardiovasc Disord,2021,21(1):78[2022-11-12]. https://doi.org/10.1186/s12872-021-01894-x. [23] FUJII R,YAMADA H,MUNETSUNA E,et al. Associations between dietary vitamin intake,ABCA1 gene promoter DNA methylation,and lipid profiles in a Japanese population[J]. Am J Clin Nutr,2019,110(5):1213-1219 . [24] GUAY S P,BRISSON D,MUNGER J,et al. ABCA1 gene promoter DNA methylation is associated with HDL particle profile and coronary artery disease in familial hypercholesterolemia[J]. Epigenetics,2012,7(5):464-472. [25] GUAY S P,LEGARE C,HOUDE A A,et al. Acetylsalicylic acid,aging and coronary artery disease are associated with ABCA1 DNA methylation in men[J/OL]. Clin Epigenetics,2014,29,6(1):14[2022-11-12]. https://doi.org/10.1186/1868-7083-6-14. [26] HOUDE A A,GUAY S P,DESGAGNE V,et al. Adaptations of placental and cord blood ABCA1 DNA methylation profile to maternal metabolic status[J]. Epigenetics,2013,8(12):1289-1302. [27] HORTON J D,GOLDSTEIN J L,BROWN M S. SREBPs:activators of the complete program of cholesterol and fatty acid synthesis in the liver[J]. J Clin Invest,2002,109(9):1125-1131. [28] YOKOYAMA C,WANG X,BRIGGS M R,et al. SREBP-1,a basic-helix-loop-helix-leucine zipper protein that controls transcription of the low density lipoprotein receptor gene[J]. Cell,1993,75(1):187-197. [29] SMOLLE E,HAYBAECK J. Non-coding RNAs and lipid metabolism[J]. Int J Mol Sci,2014,15(8):13494-13513. [30] NAJAFI-SHOUSHTARI S H,KRISTO F,LI Y X,et al. MicroRNA-33 and the SREBP host genes cooperate to control cholesterol homeostasis[J]. Science,2010,328(5985):1566-1569. [31] FLORES A M,GUREVICH I,ZHANG C,et al. TNIP1 is a corepressor of agonist-bound PPARs[J]. Arch Biochem Biophys,2011,516(1):58-66. [32] GUREVICH I,ANESKIEVICH B J. Liganded RAR alpha and RAR gamma interact with but are repressed by TNIP1[J]. Biochem Biophys Res Commun,2009,389(3):409-414. [33] CHINETTI G,LESTAVEL S,BOCHER V,et al. PPAR-alpha and PPAR-gamma activators induce cholesterol removal from human macrophage foam cells through stimulation of the ABCA1 pathway[J]. Nat Med,2001,7(1):53-58. [34] LI A C,BINDER C J,GUTIERREZ A,et al. Differential inhibition of macrophage foam-cell formation and atherosclerosis in mice by PPARα,β/δ,and γ [J]. J Clin Invest,2004,114(11):1564-1576. [35] AYAORI M,YAKUSHIJI E,OGURA M,et al. Retinoic acid receptor agonists regulate expression of ATP-binding cassette transporter G1 in macrophages[J]. Biophys Acta,2012,1821(4):561-572. [36] DRZEWINSKA J,WALCZAK-DRZEWIECKA A,RATAJEWSKI M. Identification and analysis of the promoter region of the human DHCR24 gene:involvement of DNA methylation and histone acetylation[J]. Mol Biol Rep,2011,38(2):1091-1101. [37] ZERENTURK E J,SHARPE L J,IKONEN E,et al. Desmosterol and DHCR24:unexpected new directions for a terminal step in cholesterol synthesis[J]. Prog Lipid Res,2013,52(4):666-680. [38] DAIMIEL L A,FERNANDEZ-SUAREZ M E,RODRIGUEZ-ACEBES S,et al. Promoter analysis of the DHCR24(3beta-hydroxysterol Delta(24)-reductase)gene:characterization of SREBP(sterol-regulatory-element-binding protein)-mediated activation[J]. Biosci Rep,2012,33(1):57-69. [39] WU L J,ZHAO X Y,SHEN Y,et al. Promoter methylation of fas apoptotic inhibitory molecule 2 gene is associated with obesity and dyslipidaemia in Chinese children[J]. Diab Vasc Dis Res,2015,12(3):217-220. [40] HOUDE A A,LÉGARÉ C,BIRON S,et al. Leptin and adiponectin DNA methylation levels in adipose tissues and blood cells are associated with BMI,waist girth and LDL-cholesterol levels in severely obese men and women[J/OL]. BMC Med Genet,2015,16:29[2022-11-12]. https://doi.org/10.1186/s12881-015-0174-1. [41] TOBI E W,SLIEKER R C,LUIJK R,et al. DNA methylation as a mediator of the association between prenatal adversity and risk factors for metabolic disease in adulthood[J/OL]. Sci Adv,2018,4(1):eaao4364[2022-11-12]. https://doi.org/10.1126/sciadv.aao4364. [42] SHEN L Q,LI C W,WANG Z H,et al. Early-life exposure to severe famine is associated with higher methylation level in the IGF2 gene and higher total cholesterol in late adulthood:the genomic research of the Chinese famine(GRECF)study[J/OL]. Clin Epigenetics,2019,11(1):88[2022-11-12]. https://doi.org/10.1186/s13148-019-0676-3. [43] ALI O,CERJAK D,KENT J W,et al. Methylation of SOCS3 is inversely associated with metabolic syndrome in an epigenome-wide association study of obesity[J]. Epigenetics,2016,11(9):699-707. [44] LAI C Q,PARNELL L D,SMITH C E,et al. Carbohydrate and fat intake associated with risk of metabolic diseases through epigenetics of CPT1A[J]. Am J Clin Nutr,2020,112(5):1200-1211. [45] OHASHI K,MUNETSUNA E,YAMADA H,et al. High fructose consumption induces DNA methylation at PPARalpha and CPT1A promoter regions in the rat liver[J]. Biochem Biophys Res Commun,2015,468(1/2):185-189. [46] LU X L,FRASZCZYK E,MEER T P,et al. An epigenome-wide association study identifies multiple DNA methylation markers of exposure to endocrine disruptors[J/OL]. Environ Int,2020,144:106016[2022-11-12]. https://doi.org/10.1016/j.envint.2020.106016. [47] SONG Y,ZHOU T,ZONG Y Q,et al. Arsenic inhibited cholesterol efflux of THP-1 macrophages via ROS-mediated ABCA1 hypermethylation[J/OL]. Toxicology,2019,424:152225[2022-11-12]. https://doi.org/10.1016/j.tox.2019.05.012. [48] YANG Z W,ZHAO J,WANG J,et al. Effects of cyclocarya paliurus polysaccharide on lipid metabolism-related genes DNA methylation in rats[J/OL]. Int J Biol Macromol,2019,123:343-349[2022-11-12]. https://doi.org/10.1016/j.ijbiomac.2018.11.110. [49] YUSUF N,HIDALGO B,IRVIN M R,et al. An epigenome-wide association study of inflammatory response to fenofibrate in the genetics of lipid lowering drugs and diet network[J]. Pharmacogenomics,2017,18(14):1333-1341. [50] MOHAMMADZADEH N,MONTECUCCO F,CARBONE F,et al. Statins:epidrugs with effects on endothelial health?[J/OL]. Eur J Clin Invest,2020,50(12):e13388[2022-11-12]. https://doi.org/10.1111/eci.13388. [51] OCHOA-ROSALES C,PORTILLA-FERNANDEZ E,NANO J,et al. Epigenetic link between statin therapy and type 2 diabetes[J]. Diabetes Care,2020,43(4):875-884. |
[1] | Chinese Stroke Association’s Subcommittee on Medical Quality Management and Promotion, Writing Group of Scientific Statement on the Long-Term Lipid Management in Patients with Ischemic Stroke and Transient Ischemic Attack in China. Scientific Statement on the Long-Term Lipid Management in Patients with Ischemic Stroke and Transient Ischemic Attack in China [J]. Chinese Journal of Stroke, 2024, 19(4): 440-451. |
[2] | ZHONG Wenhua, XUE Jing, XU Jie. Application of Metabolomics in Cerebro-Metabolic Disease [J]. Chinese Journal of Stroke, 2024, 19(2): 145-149. |
[3] | WANG Yanling, WANG Xuemei. A Case Report on the Treatment of Multiple Cerebral Vascular Stenosis with Aortic Arch Ulcer Plaque Using Probucol Combined with Atorvastatin [J]. Chinese Journal of Stroke, 2024, 19(2): 202-206. |
[4] | HUANG Yanling, YANG Liu, YUAN Dezhi, WANG Xuefei, WANG Hui, MENG Tao. Effects of Probucol Combined with Atorvastatin Calcium in the Treatment of Acute Cerebral Infarction [J]. Chinese Journal of Stroke, 2024, 19(10): 1143-1147. |
[5] | . Chinese Stroke Association Guidelines for Clinical Management of Cerebrovascular Diseases (Second Edition) (Except) ——Chapter Three Management of Patients at Hige-risk of Cerebrovascular Diseases [J]. Chinese Journal of Stroke, 2023, 18(8): 898-909. |
[6] | JIANG Xiaoqing, WENG Jiaxu, ZHOU Hongyu, LI Zixiao, WANG Yongjun. Advances in Correlation between DNA Methylation and Non-Large Artery Atherosclerotic Stroke [J]. Chinese Journal of Stroke, 2023, 18(04): 376-387. |
[7] |
HOU Yeye, ZHOU Hongyu, LI Zixiao.
Progress of the Relationship between DNA Methylation and Hypertension
[J]. Chinese Journal of Stroke, 2023, 18(04): 396-403.
|
[8] | WENG Jiaxu, ZHOU Hongyu, LI Zixiao. DNA Methylation and Hyperhomocysteinemia [J]. Chinese Journal of Stroke, 2023, 18(04): 404-409. |
[9] | SONG Yanli, LIN Jie, WU Yiping, LI Xiaojing, LIU Gaifen, XIA Wenjing, ZHANG Yuying, ZHANG Xiaolin, LYU Chenran, ZHOU Hong, LI Kai, XUE Bin, CHEN Lingling, ZHANG Zhongbo, PENG Xiao. Epidemiological Survey on the Risk Factors of Cardio-Cerebrovascular Diseases among Residents in Handan and Influencing Factors of Awareness, Treatment and Control Rate of Hypertension [J]. Chinese Journal of Stroke, 2022, 17(12): 1360-1365. |
[10] | YI Luo, ZHOU Hongyu, QIU Xin, LI Zixiao, WANG Yongjun. DNA Methylation Changes in Atherosclerotic Diseases [J]. Chinese Journal of Stroke, 2022, 17(11): 1163-1170. |
[11] | WANG Yubo, LI Zixiao, WANG Yongjun. Progress of the Relationship between Epigenetics and Oxidative Stress after Ischemic Stroke [J]. Chinese Journal of Stroke, 2022, 17(11): 1171-1177. |
[12] | YAN Ran, MIN Yan, QUAN Kehua, LI Zixiao. Relationship between BDNF and SLC6A4 Gene Methylation and the Prognosis of Stroke [J]. Chinese Journal of Stroke, 2022, 17(11): 1178-1182. |
[13] | CUI Lingyun, QIU Xin, ZHOU Hongyu, LI Zixiao, WANG Yongjun. Progress of the Relationship between DNA Methylation and Type 2 Diabetes [J]. Chinese Journal of Stroke, 2022, 17(11): 1183-1188. |
[14] | FENG Hao, WANG Xin, WANG Wen-Juan, ZHAO Xing-Quan. Gender Difference Analysis of the Relationship between Serum Lipids Levels and Prognosis in Elderly Patients with Intracerebral Hemorrhage [J]. Chinese Journal of Stroke, 2021, 16(10): 1016-1022. |
[15] | DENG Qi-Le, WU Jie-Hong, CHEN Ji-Xiang. Progress of Proprotein Convertase Subtilisin/Kexin Type 9 Inhibitors in the Treatment of Ischemic Stroke [J]. Chinese Journal of Stroke, 2021, 16(08): 850-854. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||