Chinese Journal of Stroke ›› 2023, Vol. 18 ›› Issue (04): 376-387.DOI: 10.3969/j.issn.1673-5765.2023.04.002
Previous Articles Next Articles
Received:
2022-12-10
Online:
2023-04-20
Published:
2023-04-20
姜晓晴, 瓮佳旭, 周宏宇, 李子孝, 王拥军
通讯作者:
王拥军 yongjunwang@ncrcnd.org.cn
基金资助:
JIANG Xiaoqing, WENG Jiaxu, ZHOU Hongyu, LI Zixiao, WANG Yongjun. Advances in Correlation between DNA Methylation and Non-Large Artery Atherosclerotic Stroke[J]. Chinese Journal of Stroke, 2023, 18(04): 376-387.
姜晓晴, 瓮佳旭, 周宏宇, 李子孝, 王拥军. DNA甲基化与非大动脉粥样硬化型卒中相关性研究进展[J]. 中国卒中杂志, 2023, 18(04): 376-387.
[1] MONTANER J,RAMIRO L,SIMATS A,et al. Multilevel omics for the discovery of biomarkers and therapeutic targets for stroke[J]. Nat Rev Neurol,2020,16(5):247-264. [2] ADAMS H P Jr,BENDIXEN B H,KAPPELLE L J,et al. Classification of subtype of acute ischemic stroke. Definitions for use in a multicenter clinical trial. TOAST trial of org 10172 in acute stroke treatment[J]. Stroke,1993,24(1):35-41. [3] BEVAN S,TRAYLOR M,ADIB-SAMII P,et al. Genetic heritability of ischemic stroke and the contribution of previously reported candidate gene and genomewide associations[J]. Stroke,2012,43(12):3161-3167. [4] DOMINGUES-MONTANARI S,MENDIOROZ M,DEL RIO-ESPINOLA A,et al. Genetics of stroke:a review of recent advances[J]. Expert Rev Mol Diagn,2008,8(4):495-513. [5] STANZIONE R,COTUGNO M,BIANCHI F,et al. Pathogenesis of ischemic stroke:role of epigenetic mechanisms[J]. Genes(Basel),2020,11(1):89. [6] TAKAI D,JONES P A. Comprehensive analysis of CpG islands in human chromosomes 21 and 22[J]. Proc Natl Acad Sci U S A,2002,99(6):3740-3745. [7] BACCARELLI A,WRIGHT R,BOLLATI V,et al. Ischemic heart disease and stroke in relation to blood DNA methylation[J]. Epidemiology,2010,21(6):819-828. [8] SORIANO-TARRAGA C,LAZCANO U,GIRALT-STEINHAUER E,et al. Identification of 20 novel loci associated with ischaemic stroke. Epigenome-wide association study[J]. Epigenetics,2020,15(9):988-997. [9] DUBAL D B,RAU S W,SHUGHRUE P J,et al. Differential modulation of estrogen receptors(ERs)in ischemic brain injury:a role for ERalpha in estradiol-mediated protection against delayed cell death[J]. Endocrinology,2006,147(6):3076-3084. [10] LIN H F,HSI E,LIAO Y C,et al. Demethylation of circulating estrogen receptor alpha gene in cerebral ischemic stroke[J/OL]. PLoS One,2015,10(9):e0139608[2022-10-11]. https://doi.org/10.1371/journal.pone.0139608. [11] LU Y J,SAREDDY G R,WANG J,et al. Neuron-derived estrogen is critical for astrocyte activation and neuroprotection of the ischemic brain[J]. J Neurosci,2020,40(38):7355-7374. [12] ZHOU R P,TIAN D L,TAO Y,et al. β-Estradiol protects against acidosis-mediated and ischemic neuronal injury by promoting ASIC1a(acid-sensing ion channel 1a)protein degradation[J]. Stroke,2019,50(10):2902-2911. [13] HABIB P,HARMS J,ZENDEDEL A,et al. Gonadal hormones E2 and P mitigate cerebral ischemia-induced upregulation of the AIM2 and NLRC4 inflammasomes in rats[J]. Int J Mol Sci,2020,21(13):4795. [14] WESTBERRY J M,PREWITT A K,WILSON M E. Epigenetic regulation of the estrogen receptor alpha promoter in the cerebral cortex following ischemia in male and female rats[J]. Neuroscience,2008,152(4):982-989. [15] CULLELL N,SORIANO-TARRAGA C,GALLEGO-FABREGA C,et al. DNA methylation and ischemic stroke risk:an epigenome-wide association study[J]. Thromb Haemost,2022,122(10):1767-1778. [16] JUNG C G,KIM H J,KAWAGUCHI M,et al. Homeotic factor ATBF1 induces the cell cycle arrest associated with neuronal differentiation[J]. Development,2005,132(23):5137-5145. [17] MALIK R,CHAUHAN G,TRAYLOR M,et al. Multiancestry genome-wide association study of 520,000 subjects identifies 32 loci associated with stroke and stroke subtypes[J]. Nat Genet,2018,50(4):524-537. [18] NINDS Stroke Genetics Network,International Stroke Genetics Consortium. Loci associated with ischaemic stroke and its subtypes(SiGN):a genome-wide association study[J]. Lancet Neurol,2016,15(2):174-184. [19] FATAR M,STROICK M,STEFFENS M,et al. Single-nucleotide polymorphisms of MMP-2 gene in stroke subtypes[J]. Cerebrovasc Dis,2008,26(2):113-119. [20] LIN H F,HSI E,HUANG L C,et al. Methylation in the matrix metalloproteinase-2 gene is associated with cerebral ischemic stroke[J]. J Investig Med,2017,65(4):794-799. [21] LUCIVERO V,PRONTERA M,MEZZAPESA D M,et al. Different roles of matrix metalloproteinases-2 and -9 after human ischaemic stroke[J]. Neurol Sci,2007,28(4):165-170. [22] ARBA F,LEIGH R,INZITARI D,et al. Blood-brain barrier leakage increases with small vessel disease in acute ischemic stroke[J]. Neurology,2017,89(21):2143-2150. [23] LEE E J,KIM M S,YIM N H,et al. Association of CYP26C1 promoter hypomethylation with small vessel occlusion in Korean subjects[J]. Genes(Basel),2021,12(10):1622. [24] ISOHERRANEN N,ZHONG G. Biochemical and physiological importance of the CYP26 retinoic acid hydroxylases[J/OL]. Pharmacol Ther,2019,204:107400[2022-10-11]. https://doi.org/10.1016/j.pharmthera.2019.107400. [25] CAI W,WANG J L,HU M Y,et al. All trans-retinoic acid protects against acute ischemic stroke by modulating neutrophil functions through STAT1 signaling[J]. J Neuroinflammation,2019,16(1):175. [26] YU S J,AIRAVAARA M,WU K J,et al. 9-CIS retinoic acid induces neurorepair in stroke brain[J]. Sci Rep,2017,7(1):4512. [27] GUO X F,LI Z,ZHOU Y,et al. Metabolic profile for prediction of ischemic stroke in Chinese hypertensive population[J]. J Stroke Cerebrovasc Dis,2019,28(4):1062-1069. [28] YU Y R,ZHANG H,SONG Y,et al. Plasma retinol and the risk of first stroke in hypertensive adults:a nested case-control study[J]. Am J Clin Nutr,2019,109(2):449-456. [29] ROWLING M J,Schalinske K L. Retinoic acid and glucocorticoid treatment induce hepatic glycine N-methyltransferase and lower plasma homocysteine concentrations in rats and rat hepatoma cells[J]. J Nutr,2003,133(11):3392-3398. [30] LARSSON S C,TRAYLOR M,MARKUS H S. Homocysteine and small vessel stroke:a mendelian randomization analysis[J]. Ann Neurol,2019,85(4):495-501. [31] AMARENCO P,BOGOUSSLAVSKY J,CAPLAN L R,et al. Classification of stroke subtypes[J]. Cerebrovasc Dis,2009,27(5):493-501. [32] KITCHING A R,ANDERS H J,BASU N,et al. ANCA-associated vasculitis[J]. Nat Rev Dis Primers,2020,6(1):71. [33] YANG J J,PENDERGRAFT W F,ALCORTA D A,et al. Circumvention of normal constraints on granule protein gene expression in peripheral blood neutrophils and monocytes of patients with antineutrophil cytoplasmic autoantibody-associated glomerulonephritis[J]. J Am Soc Nephrol,2004,15(8):2103-2114. [34] JONES B E,YANG J J,MUTHIGI A,et al. Gene-specific DNA methylation changes predict remission in patients with ANCA-associated vasculitis[J]. J Am Soc Nephrol,2017,28(4):1175-1187. [35] CIAVATTA D J,YANG J,PRESTON G A,et al. Epigenetic basis for aberrant upregulation of autoantigen genes in humans with ANCA vasculitis[J]. J Clin Invest,2010,120(9):3209-3219. [36] GUO Y L,ZHAO S,WANG G G. Polycomb gene silencing mechanisms:PRC2 chromatin targeting,H3K27me3 'Readout',and phase separation-based compaction[J]. Trends Genet,2021,37(6):547-565. [37] TERRADES-GARCIA N,CID M C. Pathogenesis of giant-cell arteritis:how targeted therapies are influencing our understanding of the mechanisms involved[J/OL]. Rheumatology(Oxford),2018,57(suppl_2):ii51-ii62[2022-10-11]. https://doi.org/10.1093/rheumatology/kex423. [38] COIT P,DE LOTT L B,NAN B,et al. DNA methylation analysis of the temporal artery microenvironment in giant cell arteritis[J]. Ann Rheum Dis,2016,75(6):1196-1202. [39] VAN SLEEN Y,WANG Q,VAN DER GEEST K S M,et al. Involvement of monocyte subsets in the immunopathology of giant cell arteritis[J]. Sci Rep,2017,7(1):6553. [40] ESTUPIÑÁN-MORENO E,ORTIZ-FERNÁNDEZ L,LI T,et al. Methylome and transcriptome profiling of giant cell arteritis monocytes reveals novel pathways involved in disease pathogenesis and molecular response to glucocorticoids[J]. Ann Rheum Dis,2022,81(9):1290-1300. [41] OZEN S,SAG E. Childhood vasculitis[J/OL]. Rheumatology(Oxford),2020,59(Suppl 3):iii95-iii100[2022-10-11]. https://doi.org/10.1093/rheumatology/kez599. [42] DUAN J Y,LOU J,ZHANG Q,et al. A genetic variant rs1801274 in FCGR2A as a potential risk marker for Kawasaki disease:a case-control study and meta-analysis[J/OL]. PLoS One,2014,9(8):e103329[2022-10-11]. https://doi.org/10.1371/journal. pone.0103329. [43] KUO H C,CHANG J C,KUO H C,et al. Identification of an association between genomic hypomethylation of FCGR2A and susceptibility to Kawasaki disease and intravenous immunoglobulin resistance by DNA methylation array[J]. Arthritis Rheumatol,2015,67(3):828-836. [44] LI S C,CHAN W C,HUANG Y H,et al. Major methylation alterations on the CpG markers of inflammatory immune associated genes after IVIG treatment in Kawasaki disease[J/OL]. BMC Med Genomics,2016,9 Suppl 1:37[2022-10-11]. https://doi.org/10.1186/s12920-016-0197-2. [45] ANANIA J C,CHENOWETH A M,WINES B D,et al. The human FcγRII(CD32)family of leukocyte FcR in health and disease[J/OL]. Front Immunol,2019,10:464[2022-10-11]. https://doi.org/10.3389/fimmu.2019.00464. [46] HUANG Y H,LI S C,HUANG L H,et al. Identifying genetic hypomethylation and upregulation of Toll-like receptors in Kawasaki disease[J/OL]. Oncotarget,2017,8(7):11249-11258[2022-10-11]. https://doi.org/10.18632/oncotarget.14497. [47] VOGELPOEL L T,HANSEN I S,VISSER M W,et al. FcγRIIa cross-talk with TLRs,IL-1R,and IFNγR selectively modulates cytokine production in human myeloid cells[J]. Immunobiology,2015,220(2):193-199. [48] GRECO A,DE VIRGILIO A,RALLI M,et al. Behcet's disease:new insights into pathophysiology,clinical features and treatment options[J]. Autoimmun Rev,2018,17(6):567-575. [49] HUGHES T,TURE-OZDEMIR F,ALIBAZ-ONER F,et al. Epigenome-wide scan identifies a treatment-responsive pattern of altered DNA methylation among cytoskeletal remodeling genes in monocytes and CD4+ T cells from patients with Behcet's disease[J]. Arthritis Rheumatol,2014,66(6):1648-1658. [50] LIU Y C,WU X Z,NIE S,et al. Methylation of phospholipase A2 group Ⅶ gene is associated with brain arteriovenous malformations in Han Chinese populations[J]. J Mol Neurosci,2020,70(7):1056-1063. [51] CHEN X S,LIU Y C,ZHOU S J,et al. Methylation of the CDKN2A gene increases the risk of brain arteriovenous malformations[J]. J Mol Neurosci,2019,69(2):316-323. [52] WANG Z P,ZHAO J K,SUN J,et al. Sex-dichotomous effects of NOS1AP promoter DNA methylation on intracranial aneurysm and brain arteriovenous malformation[J/OL]. Neurosci Lett,2016,621:47-53[2022-10-11]. https://doi.org/10.1016/j.neulet.2016.04.016. [53] ZHOU S J,GAO X,SUN J,et al. DNA methylation of the PDGFD gene promoter increases the risk for intracranial aneurysms and brain arteriovenous malformations[J]. DNA Cell Biol,2017,36(6):436-442. [54] SUNG H Y,LEE J Y,PARK A K,et al. Aberrant promoter hypomethylation of sortilin 1:a moyamoya disease biomarker[J]. J Stroke,2018,20(3):350-361. [55] CONLON D M. Role of sortilin in lipid metabolism[J]. Curr Opin Lipidol,2019,30(3):198-204. [56] ARBER D A,ORAZI A,HASSERJIAN R,et al. The 2016 revision to the World Health Organization classification of myeloid neoplasms and acute leukemia[J]. Blood,2016,127(20):2391-2405. [57] SZYBINSKI J,MEYER S C. Genetics of myeloproliferative neoplasms[J]. Hematol Oncol Clin North Am,2021,35(2):217-236. [58] PASSAMONTI F,ELENA C,SCHNITTGER S,et al. Molecular and clinical features of the myeloproliferative neoplasm associated with JAK2 exon 12 mutations[J]. Blood,2011,117(10):2813-2816. [59] ORTMANN C A,KENT D G,NANGALIA J,et al. Effect of mutation order on myeloproliferative neoplasms[J]. N Engl J Med,2015,372(7):601-612. [60] NANGALIA J,NICE F L,WEDGE D C,et al. DNMT3A mutations occur early or late in patients with myeloproliferative neoplasms and mutation order influences phenotype[J/OL]. Haematologica,2015,100(11):e438-e442[2022-10-11]. https://doi.org/10.3324/haematol.2015.129510. [61] ISSA G C,DINARDO C D. Acute myeloid leukemia with IDH1 and IDH2 mutations:2021 treatment algorithm[J]. Blood Cancer J,2021,11(6):107. [62] DELHOMMEAU F,DUPONT S,DELLA VALLE V,et al. Mutation in TET2 in myeloid cancers[J]. N Engl J Med,2009,360(22):2289-2301. [63] PÉREZ C,PASCUAL M,MARTÍN-SUBERO J I,et al. Aberrant DNA methylation profile of chronic and transformed classic Philadelphia-negative myeloproliferative neoplasms[J]. Haematologica,2013,98(9):1414-1420. [64] TANIGUCHI K,KARIN M. NF-κB,inflammation,immunity and cancer:coming of age[J]. Nat Rev Immunol,2018,18(5):309-324. [65] PETRI M. Antiphospholipid syndrome[J/OL]. Transl Res,2020,225:70-81[2022-10-11]. https://doi.org/10.1016/j.trsl.2020.04.006. [66] WEEDING E,COIT P,YALAVARTHI S,et al. Genome-wide DNA methylation analysis in primary antiphospholipid syndrome neutrophils[J/OL]. Clin Immunol,2018,196:110-116[2022-10-11]. https://doi.org/10.1016/j.clim.2018.11.011. [67] YANG W L,SHEN N,YE D Q,et al. Genome-wide association study in Asian populations identifies variants in ETS1 and WDFY4 associated with systemic lupus erythematosus[J/OL]. PLoS Genet,2010,6(2):e1000841[2022-10-11]. https://doi.org/10.1371/journal. pgen.1000841. [68] GLAS J,WAGNER J,SEIDERER J,et al. PTPN2 gene variants are associated with susceptibility to both Crohn's disease and ulcerative colitis supporting a common genetic disease background[J/OL]. PLoS One,2012,7(3):e33682[2022-10-11]. https://doi.org/10.1371/journal. pone.0033682. [69] OKADA Y,TERAO C,IKARI K,et al. Meta-analysis identifies nine new loci associated with rheumatoid arthritis in the Japanese population[J]. Nat Genet,2012,44(5):511-516. [70] PATSOURAS M D,KARAGIANNI P,KOGIONOU P,et al. Differential CpG methylation of the promoter of interleukin 8 and the first intron of tissue factor in Antiphospholipid syndrome[J/OL]. J Autoimmun,2019,102:159-166[2022-10-11]. https://doi.org/10.1016/j.jaut.2019.05.001. [71] KIRIAKIDOU M,CHING C L. Systemic lupus erythematosus[J/OL]. Ann Intern Med,2020,172(11):Itc81-itc96[2022-10-11]. https://doi.org/10.7326/AITC202006020. [72] RICHARDSON B. Effect of an inhibitor of DNA methylation on T cells. II. 5-Azacytidine induces self-reactivity in antigen-specific T4+ cells[J]. Hum Immunol,1986,17(4):456-470. [73] CORVETTA A,DELLA BITTA R,LUCHETTI M M,et al. 5-Methylcytosine content of DNA in blood,synovial mononuclear cells and synovial tissue from patients affected by autoimmune rheumatic diseases[J]. J Chromatogr,1991,566(2):481-491. [74] LU Q J,WU A,RICHARDSON B C. Demethylation of the same promoter sequence increases CD70 expression in lupus T cells and T cells treated with lupus-inducing drugs[J]. J Immunol,2005,174(10):6212-6219. [75] LU Q J,WU A,TESMER L,et al. Demethylation of CD40LG on the inactive X in T cells from women with lupus[J]. J Immunol,2007,179(9):6352-6358. [76] LIN S Y,HSIEH S C,LIN Y C,et al. A whole genome methylation analysis of systemic lupus erythematosus:hypomethylation of the IL10 and IL1R2 promoters is associated with disease activity[J]. Genes Immun,2012,13(3):214-220. [77] MI X B,ZENG F Q. Hypomethylation of interleukin-4 and -6 promoters in T cells from systemic lupus erythematosus patients[J]. Acta Pharmacol Sin,2008,29(1):105-112. [78] TANG C,LI Y,LIN X J,et al. Hypomethylation of interleukin 6 correlates with renal involvement in systemic lupus erythematosus[J]. Cent Eur J Immunol,2014,39(2):203-208. [79] ZHAO M,ZHOU Y,ZHU B C,et al. IFI44L promoter methylation as a blood biomarker for systemic lupus erythematosus[J]. Ann Rheum Dis,2016,75(11):1998-2006. [80] OKADA M,OGASAWARA H,KANEKO H,et al. Role of DNA methylation in transcription of human endogenous retrovirus in the pathogenesis of systemic lupus erythematosus[J]. J Rheumatol,2002,29(8):1678-1682. [81] PIOTROWSKI P C,DURIAGIN S,JAGODZINSKI P P. Expression of human endogenous retrovirus clone 4-1 may correlate with blood plasma concentration of anti-U1 RNP and anti-Sm nuclear antibodies[J]. Clin Rheumatol,2005,24(6):620-624. [82] WARE R E,DE MONTALEMBERT M,TSHILOLO L,et al. Sickle cell disease[J/OL]. Lancet,2017,390(10091):311-323[2022-10-11]. https://doi.org/10.1016/S0140-6736(17)30193-9. [83] PIEL F B,STEINBERG M H,REES D C. Sickle cell disease[J]. N Engl J Med,2017,376(16):1561-1573. [84] EATON W A,BUNN H F. Treating sickle cell disease by targeting HbS polymerization[J]. Blood,2017,129(20):2719-2726. [85] XU J,BAUER D E,KERENYI M A,et al. Corepressor-dependent silencing of fetal hemoglobin expression by BCL11A[J]. Proc Natl Acad Sci U S A,2013,110(16):6518-6523. [86] SEELAN R S,MUKHOPADHYAY P,PISANO M M,et al. Effects of 5-Aza-2'-deoxycytidine(decitabine)on gene expression[J]. Drug Metab Rev,2018,50(2):193-207. [87] MOLOKIE R,LAVELLE D,GOWHARI M,et al. Oral tetrahydrouridine and decitabine for non-cytotoxic epigenetic gene regulation in sickle cell disease:a randomized phase 1 study[J/OL]. PLoS Med,2017,14(9):e1002382[2022-10-11]. https://doi.org/10.1371/journal. pmed.1002382. |
[1] | HAN Ying, ZHOU Hongyu, LI Zixiao. Progress of the Relationship between DNA Methylation and Hyperlipidemia [J]. Chinese Journal of Stroke, 2023, 18(04): 388-395. |
[2] |
HOU Yeye, ZHOU Hongyu, LI Zixiao.
Progress of the Relationship between DNA Methylation and Hypertension
[J]. Chinese Journal of Stroke, 2023, 18(04): 396-403.
|
[3] | WENG Jiaxu, ZHOU Hongyu, LI Zixiao. DNA Methylation and Hyperhomocysteinemia [J]. Chinese Journal of Stroke, 2023, 18(04): 404-409. |
[4] | YI Luo, ZHOU Hongyu, QIU Xin, LI Zixiao, WANG Yongjun. DNA Methylation Changes in Atherosclerotic Diseases [J]. Chinese Journal of Stroke, 2022, 17(11): 1163-1170. |
[5] | WANG Yubo, LI Zixiao, WANG Yongjun. Progress of the Relationship between Epigenetics and Oxidative Stress after Ischemic Stroke [J]. Chinese Journal of Stroke, 2022, 17(11): 1171-1177. |
[6] | YAN Ran, MIN Yan, QUAN Kehua, LI Zixiao. Relationship between BDNF and SLC6A4 Gene Methylation and the Prognosis of Stroke [J]. Chinese Journal of Stroke, 2022, 17(11): 1178-1182. |
[7] | CUI Lingyun, QIU Xin, ZHOU Hongyu, LI Zixiao, WANG Yongjun. Progress of the Relationship between DNA Methylation and Type 2 Diabetes [J]. Chinese Journal of Stroke, 2022, 17(11): 1183-1188. |
[8] | CHEN Bin*, NIU Song-Tao, ZHANG Ya-Qing, YU Xue-Ying, CUI Tao, LIANG Xian-Hong, SHEN Yuan, ZHANG Zai-Qiang, YUAN Yun.. Endocrine Hormones in 4 Cases of MELAS Syndrome and Literature Review [J]. Chinese Journal of Stroke, 2013, 8(01): 25-30. |
[9] | WANG Kang;YAN Chuan-Zhu;WANG Guo-Xiang;et al. Mitochondrial Encephalomyopathies with Lactic Acidosis and Stroke Like Episodes-Clinical, Pathological and Mitochondrial DNA Analysis [J]. , 2009, 4(05): 365-5. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||