中国卒中杂志 ›› 2025, Vol. 20 ›› Issue (9): 1157-1166.DOI: 10.3969/j.issn.1673-5765.2025.09.011
贾瑞琪,翟华筝,张晨,汪敬业
收稿日期:
2025-02-20
修回日期:
2025-06-20
接受日期:
2025-06-27
出版日期:
2025-09-20
发布日期:
2025-09-20
通讯作者:
汪敬业 jyewang@163.com
基金资助:
JIA Ruiqi, ZHAI Huazheng, ZHANG Chen, WANG Jingye
Received:
2025-02-20
Revised:
2025-06-20
Accepted:
2025-06-27
Online:
2025-09-20
Published:
2025-09-20
Contact:
WANG Jingye, E-mail: jyewang@163.com
摘要: 目的 全脑缺血再灌注损伤后海马CA1区神经元死亡最为显著,但其原因尚不明确。本研究分析大鼠全脑缺血再灌注损伤后海马CA1区的基因组变化,寻找可能的干预靶点。
方法 将Sprague-Dawley大鼠随机分为假手术组和模型组。采用四血管法制作大鼠全脑缺血再灌注损伤模型。假手术组及模型组大鼠在全脑缺血再灌注后的5个时间点(6、12、24、48、72 h)取海马CA1区脑组织进行RNA测序。测序结果采用对比分析、基因本体论(gene ontology,GO)富集分析,以及京都基因和基因组数据库(Kyoto encyclopedia of genes and genomes,KEGG)通路分析。
结果 聚类分析显示,假手术组与全脑缺血再灌注损伤后不同时间点模型组的基因表达差异显著,上调基因数目较多。富集分析显示,共同差异表达基因主要富集于炎症反应、细胞迁移的正向调控、细胞分化的负调控、细胞间黏附的调控,以及凋亡信号通路的调控等途径。差异表达基因数目及富集到GO术语和KEGG通路数量有两个高峰,即在12 h和48 h,提示急性全脑缺血再灌注损伤后的基因表达呈现双相变化。
结论 全脑缺血再灌注损伤后有多个共同基因和通路参与缺血再灌注损伤过程,主要涉及炎症免疫反应及细胞死亡相关基因,其表达呈现双相变化,提示缺血再灌注后存在复杂的通路和调控机制。
中图分类号:
贾瑞琪, 翟华筝, 张晨, 汪敬业. 大鼠全脑缺血再灌注损伤后海马CA1区基因表达动态变化研究[J]. 中国卒中杂志, 2025, 20(9): 1157-1166.
JIA Ruiqi, ZHAI Huazheng, ZHANG Chen, WANG Jingye. Study on Dynamic Changes of Gene Expression in the Hippocampus CA1 Region after Global Cerebral Ischemia-Reperfusion Injury in Rats[J]. Chinese Journal of Stroke, 2025, 20(9): 1157-1166.
[1] WANG W Z,LIU L X,CHEN C,et al. Protective effects of dopamine D2/D3 receptor agonist piribedil on learning and memory of rats exposed to global cerebral ischemia-reperfusion[J/OL]. Neurosci Lett,2018,684:181-186[2025-05-10]. https://doi.org/10.1016/j.neulet.2018.08.011. [2] SUN W,CHEN Y T,ZHANG Y J,et al. A modified four vessel occlusion model of global cerebral ischemia in rats[J/OL]. J Neurosci Methods,2021,352:109090[2025-05-15]. https://doi.org/10.1016/j.jneumeth.2021.109090. [3] SCHMIDT-KASTNER R. Genomic approach to selective vulnerability of the hippocampus in brain ischemia-hypoxia[J/OL]. Neuroscience,2015,309:259-279[2025-05-15]. https://doi.org/10.1016/j.neuroscience.2015.08.034. [4] SCHMIDT-KASTNER R,FREUND T F. Selective vulnerability of the hippocampus in brain ischemia[J]. Neuroscience,1991,40(3):599-636. [5] BARTSCH T,DÖHRING J,REUTER S,et al. Selective neuronal vulnerability of human hippocampal CA1 neurons:lesion evolution,temporal course,and pattern of hippocampal damage in diffusion-weighted MR imaging[J]. J Cereb Blood Flow Metab,2015,35(11):1836-1845. [6] WANG C M,LIU M H,PAN Y Y,et al. Global gene expression profile of cerebral ischemia-reperfusion injury in rat MCAO model[J]. Oncotarget,2017,8(43):74607-74622. [7] DERGUNOVA L V,FILIPPENKOV I B,STAVCHANSKY V V,et al. Genome-wide transcriptome analysis using RNA-seq reveals a large number of differentially expressed genes in a transient MCAO rat model[J/OL]. BMC Genomics,2018,19(1):655[2025-05-15]. https://doi.org/10.1186/s12864-018-5039-5. [8] SHI J L,CHEN X,LI H Y,et al. Neuron-autonomous transcriptome changes upon ischemia/reperfusion injury[J/OL]. Sci Rep,2017,7(1):5800[2025-05-15]. https://doi.org/10.1038/s41598-017-05342-9. [9] MOVAHED M,BROCKIE S,HONG J,et al. Transcriptomic hallmarks of ischemia-reperfusion injury[J/OL]. Cells,2021,10(7):1838[2025-05-20]. https://doi.org/10.3390/cells10071838. [10] HORN M,SCHLOTE W. Delayed neuronal death and delayed neuronal recovery in the human brain following global ischemia[J]. Acta Neuropathol,1992,85(1):79-87. [11] ZHANG Y,CHEN Q B,CHEN D S,et al. SerpinA3N attenuates ischemic stroke injury by reducing apoptosis and neuroinflammation[J]. CNS Neurosci Ther,2021,28(4):566-579. [12] LI F S,ZHANG Y M,LI R Q,et al. Neuronal SerpinA3N is an endogenous protector against blood brain barrier damage following cerebral ischemic stroke[J]. J Cereb Blood Flow Metab,2023,43(2):241-257. [13] MUHAMMAD I F,BORNÉ Y,MELANDER O,et al. FADD(fas-associated protein with death domain),caspase-3,and caspase-8 and incidence of ischemic stroke[J]. Stroke,2018,49(9):2224-2226. [14] KAWA H,AHMED Z,MAJID A,et al. Inhibition of matrix metalloproteinases to reduce blood brain barrier disruption and haemorrhagic transformation in ischaemic stroke:go broad or go narrow?[J/OL]. Neuropharmacology,2025,262:110192[2025-05-11]. https://doi.org/10.1016/j.neuropharm.2024.110192. [15] CHELLUBOINA B,KLOPFENSTEIN J D,PINSON D M,et al. Matrix metalloproteinase-12 induces blood-brain barrier damage after focal cerebral ischemia[J]. Stroke,2015,46(12):3523-3531. [16] CHALLA S R,NALAMOLU K R,FORNAL C A,et al. Therapeutic efficacy of matrix metalloproteinase-12 suppression on neurological recovery after ischemic stroke:optimal treatment timing and duration[J/OL]. Front Neurosci,2022,16:1012812[2025-05-14]. https://doi.org/10.3389/fnins.2022.1012812. [17] WILLIAMS R S. Heat shock proteins and ischemic injury to the myocardium[J]. Circulation,1997,96(12):4138-4140. [18] KIM J Y,KIM J W,YENARI M A. Heat shock protein signaling in brain ischemia and injury[J/OL]. Neurosci Lett,2020,715:134642[2025-05-10]. https://doi.org/10.1016/j.neulet.2019.134642. [19] BAI J L,LYDEN P D. Revisiting cerebral postischemic reperfusion injury:new insights in understanding reperfusion failure,hemorrhage,and edema[J]. Int J Stroke,2015,10(2):143-152. [20] CANDELARIO-JALIL E,DIJKHUIZEN R M,MAGNUS T. Neuroinflammation,stroke,blood-brain barrier dysfunction,and imaging modalities[J]. Stroke,2022,53(5):1473-1486. |
[1] | 刘丽旭. 融合·闭环·精准:神经调控技术重塑卒中康复[J]. 中国卒中杂志, 2025, 20(9): 1073-1077. |
[2] | 王瑶, 李雨涵, 陈小刚. 混合脑机接口-功能性电刺激运动康复系统的构建与验证[J]. 中国卒中杂志, 2025, 20(9): 1079-1086. |
[3] | 夏小茜, 康晓宇, 贾凌云, 王倩惠, 张琳瑶, 张若晴, 王艺铮, 吴晓莉, 陈小刚, 刘丽旭. 基于MI-SSVEP的脑机接口辅助康复训练对卒中患者上肢运动功能的影响[J]. 中国卒中杂志, 2025, 20(9): 1087-1096. |
[4] | 栾伟, 魏达, 马超, 张华伟, 李铁民, 彭玉涛, 刘长青. 侵入性迷走神经电刺激联合康复训练治疗缺血性卒中后上肢运动功能障碍的可行性、疗效与安全性研究[J]. 中国卒中杂志, 2025, 20(9): 1097-1103. |
[5] | 解正绮, 宋晓微. ICAS所致急性缺血性卒中的斑块特征与发病机制关系研究[J]. 中国卒中杂志, 2025, 20(9): 1104-1112. |
[6] | 柴昌, 胡全忠. 红细胞压积与海拔梯度对中高海拔地区轻型缺血性卒中患者卒中后睡眠障碍的影响研究[J]. 中国卒中杂志, 2025, 20(9): 1113-1120. |
[7] | 王昶仑, 刘艳君, 艾祁, 吴勤, 占雅静. 优化的cTCD联合cTTE同步检测在右向左分流诊断中的应用与效能评估[J]. 中国卒中杂志, 2025, 20(9): 1121-1130. |
[8] | 苗连海, 陈继群, 宋诗涛, 杨志勇, 赵辉. 基于GDS-15评价老年卒中后抑郁状态的影响因素及其纵向分析[J]. 中国卒中杂志, 2025, 20(9): 1131-1136. |
[9] | 李涛, 吴宇伦, 王小雅, 李也, 陆家梁, 路子微, 党美娟, 赵莉莉, 坚雅婷, 王何莹, 张磊, 卜宁, 李雯娴, 樊洪, 张桂莲. 头颈部动脉支架植入围手术期患者血清NETs标志物的动态变化[J]. 中国卒中杂志, 2025, 20(9): 1137-1145. |
[10] | 赵殿兰, 王燕, 张宏君, 董梦甜, 胡涛. 基于吞咽造影时间学及运动学参数构建卒中后吞咽障碍短期转归不良的列线图预测模型[J]. 中国卒中杂志, 2025, 20(9): 1146-1156. |
[11] | 黄媛媛, 周婉冰, 李小燕, 卢政红, 洪小丹. β-羟基丁酸通过TRIB3/Akt/mTOR通路调控蛋白质合成和降解平衡改善卒中相关性肌少症[J]. 中国卒中杂志, 2025, 20(9): 1167-1178. |
[12] | 侯志凯, 何子骏, 于洮, 沈晨阳, 王嵘, 马宁. 经颈动脉血运重建术治疗颈动脉狭窄1例并文献分析[J]. 中国卒中杂志, 2025, 20(9): 1179-1185. |
[13] | 陆小燕, 黎佳思. 1例NOTCH3基因双位点突变致CADASIL报道[J]. 中国卒中杂志, 2025, 20(9): 1186-1192. |
[14] | 濮月华, 董培, 荆京, 董可辉, 李子孝, 龚浠平. 当急性缺血性卒中遇上“栓子雨”[J]. 中国卒中杂志, 2025, 20(9): 1193-1197. |
[15] | 李欢, 于向明. 急性缺血性卒中DWI-FLAIR不匹配影像学判读研究进展[J]. 中国卒中杂志, 2025, 20(9): 1198-1202. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||